Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38786781

ABSTRACT

The affinity between carbon nanotubes (CNTs) and organic compounds is of substantial importance since it strongly relates to the dispersibility of CNTs in those compounds. Several affinity evaluation methods have been developed so far, and the concept of the Hansen solubility parameter is a representative method widely used in the field of nanocarbon materials. Here, we demonstrate that CNT-loaded silica columns can effectively assess the affinity of organic compounds for CNT surface by exploiting the chromatographic retention time as a criterion. Obtained trends of the affinity of organic compounds for CNT were compared to those based on Hansen solubility parameter distance values. Most organic compounds showed similar trends, but one exceptional compound was observed. Simple CNT dispersion tests were conducted with these organic compounds to demonstrate the advantage of the chromatographic assessment. Further, we conducted comparison experiments using a pyrene-functionalized column and other CNT-loaded columns to elucidate the characteristics of each CNT column. The chromatographic approaches using CNT columns would be beneficial for realizing CNT suspensions with improved CNT dispersibility.

2.
RSC Adv ; 10(49): 29419-29423, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-35521114

ABSTRACT

Radical scavenging activities are attractive properties not only for scientific fields e.g. biomedicine, but for the materials industry. In this study, we report that carbon nanotubes (CNTs) can scavenge radicals from organic peroxides, while radicals from azo-type radical initiators exhibit only a few effects from the presence of CNTs. In addition, experimental results suggest the possibility that captured peroxide radicals generate active radical sites on the CNT surface, from which polymerization can take place. These results indicate the importance of selecting an appropriate radical initiator.

3.
ACS Omega ; 4(12): 14820-14830, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31552321

ABSTRACT

The formation mechanism of calcium carbonate (CC) skeletal tissues in biomineralization has remained poorly understood for a long time. Here, we propose an artificial CC biomineralization system equivalent to the natural one in terms of the primary physicochemical mechanism. Our system is constructed of a polymer gel and a CC solution unsaturated by a dissociated anionic polymer. The gel network consists of proton donor and proton acceptor polymers, which are analogues of polymers in the natural biomineralization system and have affinity for each other through hydrogen bonding interaction. Artificial biomineralization takes place within the polymer gel to produce a monolithic composite of the network and CC, whose powder X-ray diffraction pattern indicates calcite or calcite/vaterite. Scanning electron microscopy and energy-dispersive X-ray spectroscopy observation of the composite during the mineralization process revealed a two-phase structure (network/CC solid solution phase and CC hypercomplex gel phase). As artificial biomineralization proceeds, the solid phase grows in size at the cost of the gel phase as if the latter is substituted with the former, until the solid phase occupies the whole depth of the composite. These results suggest that the hypercomplex gel is the precursor of the resultant network/CC solid solution, and its discontinuous change is a phase transition to the solid solution. Despite minute differences in higher-order structures between our model system and the natural system, the fundamental structure of CC skeletal tissues in the latter can be interpreted as a network/CC solid solution, whereas that of CC cartilaginous tissues as a CC hypercomplex gel. Then, it can be deduced that, in biomineralization, the CC skeletal tissue is in principle formed via a phase transition of the CC cartilaginous tissue.

4.
J Phys Chem B ; 119(28): 8793-9, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-26101802

ABSTRACT

Several kinds of hydrogels were prepared as mimics for the collagen/acidic protein hydrogel employed as the polymer matrix for mineralization in natural bone formation. The hydrogels prepared as mineralization matrices were employed for synthesizing artificial bones. The artificial bone made from a network of poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA) prepared by heating (PVA/PAA-h-network) exhibited mechanical properties comparable with those of fish scales. To elucidate the formation mechanism of the artificial bone, we synthesized four further kinds of matrix. Artificial bones were obtained from both a PVA/PAA network prepared by repeated freezing and thawing (PVA/PAA-ft-network) and a chitosan/PAA network, in which hydrogen bonding exists between the two constituent polymers, similar to that observed in a natural collagen/acidic protein network. The artificial bone made from the chitosan/PAA network was confirmed to be formed by the phase transformation of a cartilaginous precursor by a process similar to the transformation of cartilaginous tissue to natural bone. In addition, skeletal phase material, i.e., a homogeneous solid phase of hydroxyapatite/polymers, was formed in the cartilaginous phase, i.e., the hypercomplex gel. The skeletal phase grew thicker at the expense of the cartilaginous phase until it formed the entirety of the composite. Artificial bones were also obtained from a gelatin/PAA network and a poly[N-(2-hydroxyethyl)acrylamide]-co-(acrylic acid) network. These experimental results suggested that the coexistence of proton donor and proton acceptor functions in the hydrogel is a key factor for bone formation. The hydroxyapatite content of our artificial bones was almost conterminous with those of natural bones.


Subject(s)
Artificial Organs , Bone and Bones , Durapatite/chemistry , Hydrogels/chemistry , Minerals/chemistry , Acrylic Resins/chemistry , Polyvinyl Alcohol/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...