Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 86(14)2020 07 02.
Article in English | MEDLINE | ID: mdl-32414798

ABSTRACT

Many phenylalanine- and tyrosine-producing strains have used plasmid-based overexpression of pathway genes. The resulting strains achieved high titers and yields of phenylalanine and tyrosine. Chromosomally engineered, plasmid-free producers have shown lower titers and yields than plasmid-based strains, but the former are advantageous in terms of cultivation cost and public health/environmental risk. Therefore, we engineered here the Escherichia coli chromosome to create superior phenylalanine- and tyrosine-overproducing strains that did not depend on plasmid-based expression. Integration into the E. coli chromosome of two central metabolic pathway genes (ppsA and tktA) and eight shikimate pathway genes (aroA, aroB, aroC, aroD, aroE, aroGfbr , aroL, and pheAfbr ), controlled by the T7lac promoter, resulted in excellent titers and yields of phenylalanine; the superscript "fbr" indicates that the enzyme encoded by the gene was feedback resistant. The generated strain could be changed to be a superior tyrosine-producing strain by replacing pheAfbr with tyrAfbr A rational approach revealed that integration of seven genes (ppsA, tktA, aroA, aroB, aroC, aroGfbr , and pheAfbr ) was necessary as the minimum gene set for high-yield phenylalanine production in E. coli MG1655 (tyrR, adhE, ldhA, pykF, pflDC, and ascF deletant). The phenylalanine- and tyrosine-producing strains were further applied to generate phenyllactic acid-, 4-hydroxyphenyllactic acid-, tyramine-, and tyrosol-producing strains; yield of these aromatic compounds increased proportionally to the increase in phenylalanine and tyrosine yields.IMPORTANCE Plasmid-free strains for aromatic compound production are desired in the aspect of industrial application. However, the yields of phenylalanine and tyrosine have been considerably lower in plasmid-free strains than in plasmid-based strains. The significance of this research is that we succeeded in generating superior plasmid-free phenylalanine- and tyrosine-producing strains by engineering the E. coli chromosome, which was comparable to that in plasmid-based strains. The generated strains have a potential to generate superior strains for the production of aromatic compounds. Actually, we demonstrated that four kinds of aromatic compounds could be produced from glucose with high yields (e.g., 0.28 g tyrosol/g glucose).


Subject(s)
Bacteria/metabolism , Chromosomes, Bacterial/genetics , Genetic Engineering , Phenylalanine/metabolism , Tyrosine/metabolism , Escherichia coli/genetics , Plasmids/genetics
2.
J Biosci Bioeng ; 126(5): 586-595, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29958770

ABSTRACT

Many metabolic engineering approaches have been attempted to generate strains capable of producing valuable compounds. One of main goals is industrial application of these strains. Integration of synthetic pathway genes into the Escherichia coli chromosome enables generation of a plasmid-free strain that is stable and useful for industrial applications. Strains that do not require induction are advantageous in terms of cost. In the present study, we constructed a constitutive overexpression system in E. coli to generate plasmid-free and inducer-free strains. The T7 RNA polymerase/T7 promoter overexpression system, which is an isopropyl-ß-d-thiogalactopyranoside (IPTG)-inducible gene overexpression system (T7-dependent inducible overexpression system), was modified to be a constitutive overexpression system. The constructed overexpression system, a "chromosome-based T7-dependent constitutive overexpression system", was applied in a metabolic engineering study to generate a plasmid-free and inducer-free phenylalanine producing strain of E. coli.


Subject(s)
Escherichia coli/genetics , Escherichia coli/metabolism , Metabolic Engineering , Phenylalanine/metabolism , Chromosomes, Bacterial , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Gene Expression Regulation, Bacterial , Metabolic Networks and Pathways/genetics , Organisms, Genetically Modified , Plasmids , Promoter Regions, Genetic , Viral Proteins/genetics , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...