Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
J Clin Med ; 13(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38202260

ABSTRACT

BACKGROUND: In patients with cervical spinal cord injury (SCI), we need to make accurate prognostic predictions in the acute phase for more effective rehabilitation. We hypothesized that a multivariate prognosis would be useful for patients with cervical SCI. METHODS: We made two predictive models using Multiple Linear Regression (MLR) and Artificial Neural Networks (ANNs). We adopted MLR as a conventional predictive model. Both models were created using the same 20 clinical parameters of the acute phase data at the time of admission. The prediction results were classified by the ASIA Impairment Scale. The training data consisted of 60 cases, and prognosis prediction was performed for 20 future cases (test cohort). All patients were treated in the Spinal Injuries Center (SIC) in Fukuoka, Japan. RESULTS: A total of 16 out of 20 cases were predictable. The correct answer rate of MLR was 31.3%, while the rate of ANNs was 75.0% (number of correct answers: 12). CONCLUSION: We were able to predict the prognosis of patients with cervical SCI from acute clinical data using ANNs. Performing effective rehabilitation based on this prediction will improve the patient's quality of life after discharge. Although there is room for improvement, ANNs are useful as a prognostic tool for patients with cervical SCI.

2.
Viruses ; 15(12)2023 12 13.
Article in English | MEDLINE | ID: mdl-38140662

ABSTRACT

The entry of SARS-CoV-2 into host cells is mediated by the interaction between the spike receptor-binding domain (RBD) and host angiotensin-converting enzyme 2 (ACE2). Certain human antibodies, which target the spike N-terminal domain (NTD) at a distant epitope from the host cell binding surface, have been found to augment ACE2 binding and enhance SARS-CoV-2 infection. Notably, these antibodies exert their effect independently of the antibody fragment crystallizable (Fc) region, distinguishing their mode of action from previously described antibody-dependent infection-enhancing (ADE) mechanisms. Building upon previous hypotheses and experimental evidence, we propose that these NTD-targeting infection-enhancing antibodies (NIEAs) achieve their effect through the crosslinking of neighboring spike proteins. In this study, we present refined structural models of NIEA fragment antigen-binding region (Fab)-NTD complexes, supported by molecular dynamics simulations and hydrogen-deuterium exchange mass spectrometry (HDX-MS). Furthermore, we provide direct evidence confirming the crosslinking of spike NTDs by NIEAs. Collectively, our findings advance our understanding of the molecular mechanisms underlying NIEAs and their impact on SARS-CoV-2 infection.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/metabolism , Spike Glycoprotein, Coronavirus , Protein Binding , Antibodies, Viral
3.
ACS Nano ; 17(19): 18758-18774, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37814788

ABSTRACT

RNA vaccines based on lipid nanoparticles (LNPs) with in vitro transcribed mRNA (IVT-mRNA) encapsulated are now a currently successful but still evolving modality of vaccines. One of the advantages of RNA vaccines is their ability to induce CD8+ T-cell-mediated cellular immunity that is indispensable for excluding pathogen-infected cells or cancer cells from the body. In this study, we report on the development of LNPs with an enhanced capability for inducing cellular immunity by using an ionizable lipid with a vitamin E scaffold. An RNA vaccine that contained this ionizable lipid and an IVT-mRNA encoding a model antigen ovalbumin (OVA) induced OVA-specific cytotoxic T cell responses and showed an antitumor effect against an E.G7-OVA tumor model. Vaccination with the LNPs conferred protection against lethal infection by Toxoplasma gondii using its antigen TgPF. The vitamin E scaffold-dependent type I interferon response was important for effector CD8+ T cell differentiation induced by the mRNA-LNPs. Our findings also revealed that conventional dendritic cells (cDCs) were essential for achieving CD8+ T cell responses induced by the mRNA-LNPs, while the XCR1-positive subset of cDCs, cDC1 specialized for antigen cross-presentation, was not required. Consistently, the mRNA-LNPs were found to selectively transfect another subset of cDCs, cDC2 that had migrated from the skin to lymph nodes, where they could make vaccine-antigen-dependent contacts with CD8+ T cells. The findings indicate that the activation of innate immune signaling by the adjuvant activity of the vitamin E scaffold and the expression of antigens in cDC2 are important for subsequent antigen presentation and the establishment of antigen-specific immune responses.


Subject(s)
Nanoparticles , T-Lymphocytes, Cytotoxic , Animals , Mice , CD8-Positive T-Lymphocytes , Vitamin E/pharmacology , Vaccines, Synthetic , mRNA Vaccines , Antigens , Ovalbumin , RNA, Messenger/genetics , Lipids/pharmacology , Mice, Inbred C57BL , Dendritic Cells
4.
Nat Commun ; 14(1): 6538, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37863901

ABSTRACT

Histamine is a biogenic amine that participates in allergic and inflammatory processes by stimulating histamine receptors. The histamine H4 receptor (H4R) is a potential therapeutic target for chronic inflammatory diseases such as asthma and atopic dermatitis. Here, we show the cryo-electron microscopy structures of the H4R-Gq complex bound with an endogenous agonist histamine or the selective agonist imetit bound in the orthosteric binding pocket. The structures demonstrate binding mode of histamine agonists and that the subtype-selective agonist binding causes conformational changes in Phe3447.39, which, in turn, form the "aromatic slot". The results provide insights into the molecular underpinnings of the agonism of H4R and subtype selectivity of histamine receptors, and show that the H4R structures may be valuable in rational drug design of drugs targeting the H4R.


Subject(s)
Histamine , Receptors, G-Protein-Coupled , Humans , Histamine/metabolism , Receptors, Histamine H4 , Cryoelectron Microscopy , Receptors, G-Protein-Coupled/metabolism , Receptors, Histamine/metabolism , Histamine Agonists/pharmacology
5.
Sci Transl Med ; 15(711): eadi2623, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37647387

ABSTRACT

The Omicron variant continuously evolves under the humoral immune pressure exerted by vaccination and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and the resulting Omicron subvariants display further immune evasion and antibody escape. An engineered angiotensin-converting enzyme 2 (ACE2) decoy composed of high-affinity ACE2 and an IgG1 Fc domain could offer an alternative modality to neutralize SARS-CoV-2. We previously reported its broad spectrum and therapeutic potential in rodent models. Here, we demonstrate that the engineered ACE2 decoy retains neutralization activity against Omicron subvariants, including the currently emerging XBB and BQ.1 strains, which completely evade antibodies currently in clinical use. SARS-CoV-2, under the suboptimal concentration of neutralizing drugs, generated SARS-CoV-2 mutants escaping wild-type ACE2 decoy and monoclonal antibodies, whereas no escape mutant emerged against the engineered ACE2 decoy. Furthermore, inhalation of aerosolized decoys improved the outcomes of rodents infected with SARS-CoV-2 at a 20-fold lower dose than that of intravenous administration. Last, the engineered ACE2 decoy exhibited therapeutic efficacy for cynomolgus macaques infected with SARS-CoV-2. These results indicate that this engineered ACE2 decoy represents a promising therapeutic strategy to overcome immune-evading SARS-CoV-2 variants and that liquid aerosol inhalation could be considered as a noninvasive approach to enhance the efficacy of COVID-19 treatments.


Subject(s)
COVID-19 , Animals , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal , Macaca fascicularis
6.
Nat Commun ; 14(1): 4090, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37429854

ABSTRACT

F1 domain of ATP synthase is a rotary ATPase complex in which rotation of central γ-subunit proceeds in 120° steps against a surrounding α3ß3 fueled by ATP hydrolysis. How the ATP hydrolysis reactions occurring in three catalytic αß dimers are coupled to mechanical rotation is a key outstanding question. Here we describe catalytic intermediates of the F1 domain in FoF1 synthase from Bacillus PS3 sp. during ATP mediated rotation captured using cryo-EM. The structures reveal that three catalytic events and the first 80° rotation occur simultaneously in F1 domain when nucleotides are bound at all the three catalytic αß dimers. The remaining 40° rotation of the complete 120° step is driven by completion of ATP hydrolysis at αDßD, and proceeds through three sub-steps (83°, 91°, 101°, and 120°) with three associated conformational intermediates. All sub-steps except for one between 91° and 101° associated with phosphate release, occur independently of the chemical cycle, suggesting that the 40° rotation is largely driven by release of intramolecular strain accumulated by the 80° rotation. Together with our previous results, these findings provide the molecular basis of ATP driven rotation of ATP synthases.


Subject(s)
Bacillus , Hydrolysis , Rotation , Catalysis , Nitric Oxide Synthase , Polymers , Adenosine Triphosphate
7.
Sci Rep ; 13(1): 2279, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36755111

ABSTRACT

Functionalization of graphene is one of the most important fundamental technologies in a wide variety of fields including industry and biochemistry. We have successfully achieved a novel oxidative modification of graphene using photoactivated ClO2· as a mild oxidant and confirmed the oxidized graphene grid is storable with its functionality for at least three months under N2 atmosphere. Subsequent chemical functionalization enabled us to develop an epoxidized graphene grid (EG-grid™), which effectively adsorbs protein particles for electron cryomicroscopy (cryoEM) image analysis. The EG-grid dramatically improved the particle density and orientation distribution. The density maps of GroEL and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were reconstructed at 1.99 and 2.16 Å resolution from only 504 and 241 micrographs, respectively. A sample solution of 0.1 mg ml-1 was sufficient to reconstruct a 3.10 Å resolution map of SARS-CoV-2 spike protein from 1163 micrographs. The map resolutions of ß-galactosidase and apoferritin easily reached 1.81 Å and 1.29 Å resolution, respectively, indicating its atomic-resolution imaging capability. Thus, the EG-grid will be an extremely powerful tool for highly efficient high-resolution cryoEM structural analysis of biological macromolecules.


Subject(s)
COVID-19 , Graphite , Humans , SARS-CoV-2 , Proteins , Cryoelectron Microscopy/methods
8.
J Biol Chem ; 299(2): 102884, 2023 02.
Article in English | MEDLINE | ID: mdl-36626983

ABSTRACT

Vacuolar/archaeal-type ATPase (V/A-ATPase) is a rotary ATPase that shares a common rotary catalytic mechanism with FoF1 ATP synthase. Structural images of V/A-ATPase obtained by single-particle cryo-electron microscopy during ATP hydrolysis identified several intermediates, revealing the rotary mechanism under steady-state conditions. However, further characterization is needed to understand the transition from the ground state to the steady state. Here, we identified the cryo-electron microscopy structures of V/A-ATPase corresponding to short-lived initial intermediates during the activation of the ground state structure by time-resolving snapshot analysis. These intermediate structures provide insights into how the ground-state structure changes to the active, steady state through the sequential binding of ATP to its three catalytic sites. All the intermediate structures of V/A-ATPase adopt the same asymmetric structure, whereas the three catalytic dimers adopt different conformations. This is significantly different from the initial activation process of FoF1, where the overall structure of the F1 domain changes during the transition from a pseudo-symmetric to a canonical asymmetric structure (PNAS NEXUS, pgac116, 2022). In conclusion, our findings provide dynamical information that will enhance the future prospects for studying the initial activation processes of the enzymes, which have unknown intermediate structures in their functional pathway.


Subject(s)
Adenosine Triphosphate , Vacuolar Proton-Translocating ATPases , Adenosine Triphosphate/metabolism , Catalytic Domain , Cryoelectron Microscopy , Vacuolar Proton-Translocating ATPases/chemistry , Vacuolar Proton-Translocating ATPases/metabolism , Enzyme Activation , Protein Conformation
9.
Biochem Biophys Res Commun ; 631: 78-85, 2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36179499

ABSTRACT

Many motile bacteria swim and swarm toward favorable environments using the flagellum, which is rotated by a motor embedded in the inner membrane. The motor is composed of the rotor and the stator, and the motor torque is generated by the change of the interaction between the rotor and the stator induced by the ion flow through the stator. A stator unit consists of two types of membrane proteins termed A and B. Recent cryo-EM studies on the stators from mesophiles revealed that the stator consists of five A and two B subunits, whereas the low-resolution EM analysis showed that purified hyperthermophilic MotA forms a tetramer. To clarify the assembly formation and factors enhancing thermostability of the hyperthermophilic stator, we determined the cryo-EM structure of MotA from Aquifex aeolicus (Aa-MotA), a hyperthermophilic bacterium, at 3.42 Å resolution. Aa-MotA forms a pentamer with pseudo C5 symmetry. A simulated model of the Aa-MotA5MotB2 stator complex resembles the structures of mesophilic stator complexes, suggesting that Aa-MotA can assemble into a pentamer equivalent to the stator complex without MotB. The distribution of hydrophobic residues of MotA pentamers suggests that the extremely hydrophobic nature in the subunit boundary and the transmembrane region is a key factor to stabilize hyperthermophilic Aa-MotA.


Subject(s)
Bacterial Proteins , Flagella , Archaea/metabolism , Bacteria/metabolism , Bacterial Proteins/metabolism , Flagella/chemistry , Membrane Proteins/metabolism , Molecular Motor Proteins/metabolism
10.
Nat Commun ; 13(1): 4082, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35882843

ABSTRACT

The Na+-pumping NADH-ubiquinone oxidoreductase (Na+-NQR) couples electron transfer from NADH to ubiquinone with Na+-pumping, generating an electrochemical Na+ gradient that is essential for energy-consuming reactions in bacteria. Since Na+-NQR is exclusively found in prokaryotes, it is a promising target for highly selective antibiotics. However, the molecular mechanism of inhibition is not well-understood for lack of the atomic structural information about an inhibitor-bound state. Here we present cryo-electron microscopy structures of Na+-NQR from Vibrio cholerae with or without a bound inhibitor at 2.5- to 3.1-Å resolution. The structures reveal the arrangement of all six redox cofactors including a herein identified 2Fe-2S cluster located between the NqrD and NqrE subunits. A large part of the hydrophilic NqrF is barely visible in the density map, suggesting a high degree of flexibility. This flexibility may be responsible to reducing the long distance between the 2Fe-2S centers in NqrF and NqrD/E. Two different types of specific inhibitors bind to the N-terminal region of NqrB, which is disordered in the absence of inhibitors. The present study provides a foundation for understanding the function of Na+-NQR and the binding manner of specific inhibitors.


Subject(s)
Quinone Reductases , Vibrio cholerae , Bacterial Proteins/metabolism , Cryoelectron Microscopy , Electron Transport Complex I/metabolism , Oxidation-Reduction , Quinone Reductases/metabolism , Sodium/metabolism , Vibrio cholerae/metabolism
11.
Microscopy (Oxf) ; 71(5): 249-261, 2022 Oct 06.
Article in English | MEDLINE | ID: mdl-35861182

ABSTRACT

Progress in structural membrane biology has been significantly accelerated by the ongoing 'Resolution Revolution' in cryo-electron microscopy (cryo-EM). In particular, structure determination by single-particle analysis has evolved into the most powerful method for atomic model building of multisubunit membrane protein complexes. This has created an ever-increasing demand in cryo-EM machine time, which to satisfy is in need of new and affordable cryo-electron microscopes. Here, we review our experience in using the JEOL CRYO ARM 200 prototype for the structure determination by single-particle analysis of three different multisubunit membrane complexes: the Thermus thermophilus V-type ATPase VO complex, the Thermosynechococcus elongatus photosystem I monomer and the flagellar motor lipopolysaccharide peptidoglycan ring (LP ring) from Salmonella enterica.


Subject(s)
Vacuolar Proton-Translocating ATPases , Cryoelectron Microscopy/methods , Lipopolysaccharides , Peptidoglycan , Photosystem I Protein Complex/metabolism , Vacuolar Proton-Translocating ATPases/chemistry , Vacuolar Proton-Translocating ATPases/metabolism
12.
PNAS Nexus ; 1(3): pgac116, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36741449

ABSTRACT

Adenosine triphosphate (ATP) synthases (F0F1-ATPases) are crucial for all aerobic organisms. F1, a water-soluble domain, can catalyze both the synthesis and hydrolysis of ATP with the rotation of the central γε rotor inside a cylinder made of α 3 ß 3 in three different conformations (referred to as ß E, ß TP, and ß DP). In this study, we determined multiple cryo-electron microscopy structures of bacterial F0F1 exposed to different reaction conditions. The structures of nucleotide-depleted F0F1 indicate that the ε subunit directly forces ß TP to adopt a closed form independent of the nucleotide binding to ß TP. The structure of F0F1 under conditions that permit only a single catalytic ß subunit per enzyme to bind ATP is referred to as unisite catalysis and reveals that ATP hydrolysis unexpectedly occurs on ß TP instead of ß DP, where ATP hydrolysis proceeds in the steady-state catalysis of F0F1. This indicates that the unisite catalysis of bacterial F0F1 significantly differs from the kinetics of steady-state turnover with continuous rotation of the shaft.

13.
Cell ; 184(13): 3452-3466.e18, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34139176

ABSTRACT

Antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein prevent SARS-CoV-2 infection. However, the effects of antibodies against other spike protein domains are largely unknown. Here, we screened a series of anti-spike monoclonal antibodies from coronavirus disease 2019 (COVID-19) patients and found that some of antibodies against the N-terminal domain (NTD) induced the open conformation of RBD and thus enhanced the binding capacity of the spike protein to ACE2 and infectivity of SARS-CoV-2. Mutational analysis revealed that all of the infectivity-enhancing antibodies recognized a specific site on the NTD. Structural analysis demonstrated that all infectivity-enhancing antibodies bound to NTD in a similar manner. The antibodies against this infectivity-enhancing site were detected at high levels in severe patients. Moreover, we identified antibodies against the infectivity-enhancing site in uninfected donors, albeit at a lower frequency. These findings demonstrate that not only neutralizing antibodies but also enhancing antibodies are produced during SARS-CoV-2 infection.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , COVID-19/immunology , Cell Line , Chlorocebus aethiops , HEK293 Cells , Humans , Protein Binding/immunology , Protein Domains/immunology , Spike Glycoprotein, Coronavirus/genetics , Vero Cells
14.
Biochim Biophys Acta Bioenerg ; 1861(11): 148281, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32735859

ABSTRACT

It is well known that the disruption of the mitochondrial respiratory components prolongs lifespan in many species. The mitochondrial stress response can lead to an increased survival rate through the restoration of the cellular homeostasis. Therefore, developing pharmacological interventions that induce mitochondrial stress response may be desirable to delay the onset of age-related diseases and promote a healthy life. In this study, we present chemical compounds, revealed by systematic screening of chemical libraries, which inhibit mitochondrial ATP synthesis in mammalian cells. Our study demonstrates that these compounds alter the body length and promote the oxidative stress response which leads to an increased longevity in Caenorhabditis elegans. Thus, our study identifies chemical compounds that may have potential therapeutic applications through affecting the mitochondrial function.


Subject(s)
Adenosine Triphosphate/metabolism , Caenorhabditis elegans Proteins/antagonists & inhibitors , Caenorhabditis elegans/growth & development , Mitochondria/drug effects , Oxidative Stress/drug effects , Small Molecule Libraries/pharmacology , Superoxide Dismutase/antagonists & inhibitors , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , High-Throughput Screening Assays , Longevity , Mitochondria/metabolism , Organelle Biogenesis
15.
Elife ; 92020 07 08.
Article in English | MEDLINE | ID: mdl-32639230

ABSTRACT

V-ATPase is an energy converting enzyme, coupling ATP hydrolysis/synthesis in the hydrophilic V1 domain, with proton flow through the Vo membrane domain, via rotation of the central rotor complex relative to the surrounding stator apparatus. Upon dissociation from the V1 domain, the Vo domain of the eukaryotic V-ATPase can adopt a physiologically relevant auto-inhibited form in which proton conductance through the Vo domain is prevented, however the molecular mechanism of this inhibition is not fully understood. Using cryo-electron microscopy, we determined the structure of both the holo V/A-ATPase and isolated Vo at near-atomic resolution, respectively. These structures clarify how the isolated Vo domain adopts the auto-inhibited form and how the holo complex prevents formation of the inhibited Vo form.


Subject(s)
Bacterial Proteins/chemistry , Thermus thermophilus/chemistry , Vacuolar Proton-Translocating ATPases/chemistry , Cryoelectron Microscopy , Hydrolysis , Protein Structure, Secondary , Thermus thermophilus/enzymology
16.
Biophys Physicobiol ; 16: 140-146, 2019.
Article in English | MEDLINE | ID: mdl-31660281

ABSTRACT

Proton-translocating rotary ATPases couple proton influx across the membrane domain and ATP hydrolysis/synthesis in the soluble domain through rotation of the central rotor axis against the surrounding peripheral stator apparatus. It is a significant challenge to determine the structure of rotary ATPases due to their intrinsic conformational heterogeneity and instability. Recent progress of single particle analysis of protein complexes using cryogenic electron microscopy (cryo-EM) has enabled the determination of whole rotary ATPase structures and made it possible to classify different rotational states of the enzymes at a near atomic resolution. Three cryo-EM maps corresponding to different rotational states of the V/A type H+-rotary ATPase from a bacterium Thermus thermophilus provide insights into the rotation of the whole complex, which allow us to determine the movement of each subunit during rotation. In addition, this review describes methodological developments to determine higher resolution cryo-EM structures, such as specimen preparation, to improve the image contrast of membrane proteins.

17.
Nat Commun ; 9(1): 89, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29311594

ABSTRACT

Proton translocating rotary ATPases couple ATP hydrolysis/synthesis, which occurs in the soluble domain, with proton flow through the membrane domain via a rotation of the common central rotor complex against the surrounding peripheral stator apparatus. Here, we present a large data set of single particle cryo-electron micrograph images of the V/A type H+-rotary ATPase from the bacterium Thermus thermophilus, enabling the identification of three rotational states based on the orientation of the rotor subunit. Using masked refinement and classification with signal subtractions, we obtain homogeneous reconstructions for the whole complexes and soluble V1 domains. These reconstructions are of higher resolution than any EM map of intact rotary ATPase reported previously, providing a detailed molecular basis for how the rotary ATPase maintains structural integrity of the peripheral stator apparatus, and confirming the existence of a clear proton translocation path from both sides of the membrane.


Subject(s)
Adenosine Triphosphate/metabolism , Bacterial Proteins/metabolism , Thermus thermophilus/enzymology , Vacuolar Proton-Translocating ATPases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/ultrastructure , Biological Transport , Cryoelectron Microscopy , Hydrolysis , Models, Molecular , Protein Conformation , Protein Subunits/chemistry , Protein Subunits/metabolism , Protons , Rotation , Vacuolar Proton-Translocating ATPases/chemistry , Vacuolar Proton-Translocating ATPases/ultrastructure
18.
PLoS One ; 13(1): e0190213, 2018.
Article in English | MEDLINE | ID: mdl-29298324

ABSTRACT

General anesthetics are indispensable for effective clinical care. Although, the mechanism of action of general anesthetics remains controversial, lipid bilayers and proteins have been discussed as their targets. In this study, we focused on the relationship between cellular ATP levels and general anesthetics. The ATP levels of nematodes and cultured mammalian cells were decreased by exposure to three general anesthetics: isoflurane, pentobarbital, and 1-phenoxy-2-propanol. Furthermore, these general anesthetics abolished mitochondrial membrane potential, resulting in the inhibition of mitochondrial ATP synthesis. These results suggest that the observed decrease of cellular ATP level is a common phenomenon of general anesthetics.


Subject(s)
Adenosine Triphosphate/metabolism , Anesthetics, General/pharmacology , Mitochondria/drug effects , Animals , Animals, Genetically Modified , Caenorhabditis elegans/drug effects , Cell Line, Tumor , Humans , Lipid Bilayers , Membrane Potential, Mitochondrial/drug effects , Mice , Mitochondria/metabolism
19.
Proc Natl Acad Sci U S A ; 113(40): 11214-11219, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27647891

ABSTRACT

F1- and V1-ATPase are rotary molecular motors that convert chemical energy released upon ATP hydrolysis into torque to rotate a central rotor axle against the surrounding catalytic stator cylinder with high efficiency. How conformational change occurring in the stator is coupled to the rotary motion of the axle is the key unknown in the mechanism of rotary motors. Here, we generated chimeric motor proteins by inserting an exogenous rod protein, FliJ, into the stator ring of F1 or of V1 and tested the rotation properties of these chimeric motors. Both motors showed unidirectional and continuous rotation, despite no obvious homology in amino acid sequence between FliJ and the intrinsic rotor subunit of F1 or V1 These results showed that any residue-specific interactions between the stator and rotor are not a prerequisite for unidirectional rotation of both F1 and V1 The torque of chimeric motors estimated from viscous friction of the rotation probe against medium revealed that whereas the F1-FliJ chimera generates only 10% of WT F1, the V1-FliJ chimera generates torque comparable to that of V1 with the native axle protein that is structurally more similar to FliJ than the native rotor of F1 This suggests that the gross structural mismatch hinders smooth rotation of FliJ accompanied with the stator ring of F1.


Subject(s)
Molecular Motor Proteins/chemistry , Rotation , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Models, Molecular , Molecular Motor Proteins/metabolism , Probability , Protein Subunits/chemistry , Protein Subunits/metabolism , Proton-Translocating ATPases/chemistry , Recombinant Proteins/chemistry , Sequence Alignment , Time Factors , Torque , Vacuolar Proton-Translocating ATPases/chemistry , Vacuolar Proton-Translocating ATPases/metabolism
20.
PLoS One ; 10(3): e0119602, 2015.
Article in English | MEDLINE | ID: mdl-25756791

ABSTRACT

Vacuolar type rotary H+-ATPases (VoV1) couple ATP synthesis/hydrolysis by V1 with proton translocation by Vo via rotation of a central rotor apparatus composed of the V1-DF rotor shaft, a socket-like Vo-C (eukaryotic Vo-d) and the hydrophobic rotor ring. Reconstitution experiments using subcomplexes revealed a weak binding affinity of V1-DF to Vo-C despite the fact that torque needs to be transmitted between V1-DF and Vo-C for the tight energy coupling between V1 and Vo. Mutation of a short helix at the tip of V1-DF caused intramolecular uncoupling of VoV1, suggesting that proper fitting of the short helix of V1-D into the socket of Vo-C is required for tight energy coupling between V1 and Vo. To account for the apparently contradictory properties of the interaction between V1-DF and Vo-C (weak binding affinity but strict requirement for torque transmission), we propose a model in which the relationship between V1-DF and Vo-C corresponds to that between a slotted screwdriver and a head of slotted screw. This model is consistent with our previous result in which the central rotor apparatus is not the major factor for the association of V1 with Vo (Kishikawa and Yokoyama, J Biol Chem. 2012 24597-24603).


Subject(s)
Bacterial Proteins/chemistry , Vacuolar Proton-Translocating ATPases/chemistry , Energy Transfer , Fluorescence Resonance Energy Transfer , Kinetics , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Quaternary , Protein Subunits/chemistry , Thermus thermophilus/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...