Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-33344998

ABSTRACT

In baseball, batters swing in response to a ball moving at high speed within a limited amount of time-about 0. 5 s. In order to make such movement possible, quick and accurate trajectory prediction followed by accurate swing motion with optimal body-eye coordination is considered essential, but the mechanisms involved are not clearly understood. The present study aims to clarify the strategies of eye and head movements adopted by elite baseball batters in actual game situations. In our experiment, six current professional baseball batters faced former professional baseball pitchers in a scenario close to a real game (i.e., without the batters informed about pitch type in advance). We measured eye movements with a wearable eye-tracker and head movements and bat trajectories with an optical motion capture system while the batters hit. In the eye movement measurements, contrary to previous studies, we found distinctive predictive saccades directed toward the predicted trajectory, of which the first saccades were initiated approximately 80-220 ms before impact for all participants. Predictive saccades were initiated significantly later when batters knew the types of pitch in advance compared to when they did not. We also found that the best three batters started predictive saccades significantly later and tended to have fewer gaze-ball errors than the other three batters. This result suggests that top batters spend slightly more time obtaining visual information by delaying the initiation of saccades. Furthermore, although all batters showed positive correlations between bat location and head direction at the time of impact, the better batters showed no correlation between bat location and gaze direction at that time. These results raise the possibility of differences in the coding process for the location of bat-ball contact; namely, that top batters might utilize head direction to encode impact locations.

2.
Article in English | MEDLINE | ID: mdl-33345055

ABSTRACT

We investigated the visuomotor strategies of baseball batting, in particular, the relationship between eye and body (head and hip) movements during batting for a wide range of ball speeds. Nine college baseball players participated in the experiment and hit balls projected by a pitching machine operating at four different ball speeds (80, 100, 120, 140 km/h). Eye movements were measured with a wearable eye tracker, and body movements were measured with an optical motion capture system. In the early period of the ball's flight, batters foveated the ball with overshooting head movements in the direction of the ball's flight while compensating for the overshooting head movements with eye movements for the two slower ball speeds (80 and 100 km/h) and only head rotations for the two faster ball speeds (120 and 140 km/h). After that, batters made a predictive saccade and a quick head rotation to the future ball position before the angular velocity of the ball drastically increased. We also found that regardless of the ball speed, the onsets of the predictive saccade and the quick head movement were temporally aligned with the bat-ball contact and rotation of the hip (swing motion), but were not correlated with the elapsed time from the ball's release or the ball's location. These results indicate that the gaze movements in baseball batting are not solely driven by external visual information (ball position or velocity) but are determined in relation to other body movements.

SELECTION OF CITATIONS
SEARCH DETAIL
...