Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(25): e2400566121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38870061

ABSTRACT

Intrinsic and acquired resistance to mitogen-activated protein kinase inhibitors (MAPKi) in melanoma remains a major therapeutic challenge. Here, we show that the clinical development of resistance to MAPKi is associated with reduced tumor expression of the melanoma suppressor Autophagy and Beclin 1 Regulator 1 (AMBRA1) and that lower expression levels of AMBRA1 predict a poor response to MAPKi treatment. Functional analyses show that loss of AMBRA1 induces phenotype switching and orchestrates an extracellular signal-regulated kinase (ERK)-independent resistance mechanism by activating focal adhesion kinase 1 (FAK1). In both in vitro and in vivo settings, melanomas with low AMBRA1 expression exhibit intrinsic resistance to MAPKi therapy but higher sensitivity to FAK1 inhibition. Finally, we show that the rapid development of resistance in initially MAPKi-sensitive melanomas can be attributed to preexisting subclones characterized by low AMBRA1 expression and that cotreatment with MAPKi and FAK1 inhibitors (FAKi) effectively prevents the development of resistance in these tumors. In summary, our findings underscore the value of AMBRA1 expression for predicting melanoma response to MAPKi and supporting the therapeutic efficacy of FAKi to overcome MAPKi-induced resistance.


Subject(s)
Adaptor Proteins, Signal Transducing , Drug Resistance, Neoplasm , Melanoma , Protein Kinase Inhibitors , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Humans , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Line, Tumor , Animals , Mice , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/antagonists & inhibitors , Xenograft Model Antitumor Assays , Mitogen-Activated Protein Kinases/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Female
2.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38701414

ABSTRACT

Gliomas are the most common type of malignant brain tumors, with glioblastoma multiforme (GBM) having a median survival of 15 months due to drug resistance and relapse. The treatment of gliomas relies on surgery, radiotherapy and chemotherapy. Only 12 anti-brain tumor chemotherapies (AntiBCs), mostly alkylating agents, have been approved so far. Glioma subtype-specific metabolic models were reconstructed to simulate metabolite exchanges, in silico knockouts and the prediction of drug and drug combinations for all three subtypes. The simulations were confronted with literature, high-throughput screenings (HTSs), xenograft and clinical trial data to validate the workflow and further prioritize the drug candidates. The three subtype models accurately displayed different degrees of dependencies toward glutamine and glutamate. Furthermore, 33 single drugs, mainly antimetabolites and TXNRD1-inhibitors, as well as 17 drug combinations were predicted as potential candidates for gliomas. Half of these drug candidates have been previously tested in HTSs. Half of the tested drug candidates reduce proliferation in cell lines and two-thirds in xenografts. Most combinations were predicted to be efficient for all three glioma types. However, eflornithine/rifamycin and cannabidiol/adapalene were predicted specifically for GBM and low-grade glioma, respectively. Most drug candidates had comparable efficiency in preclinical tests, cerebrospinal fluid bioavailability and mode-of-action to AntiBCs. However, fotemustine and valganciclovir alone and eflornithine and celecoxib in combination with AntiBCs improved the survival compared to AntiBCs in two-arms, phase I/II and higher glioma clinical trials. Our work highlights the potential of metabolic modeling in advancing glioma drug discovery, which accurately predicted metabolic vulnerabilities, repurposable drugs and combinations for the glioma subtypes.


Subject(s)
Glioma , Humans , Glioma/drug therapy , Glioma/metabolism , Glioma/pathology , Cannabidiol/therapeutic use , Cannabidiol/pharmacology , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Animals , Models, Biological , Cell Line, Tumor , Organophosphorus Compounds/therapeutic use , Organophosphorus Compounds/pharmacology
3.
Cell Death Dis ; 14(7): 468, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37495601

ABSTRACT

Despite high initial response rates to targeted kinase inhibitors, the majority of patients suffering from metastatic melanoma present with high relapse rates, demanding for alternative therapeutic options. We have previously developed a drug repurposing workflow to identify metabolic drug targets that, if depleted, inhibit the growth of cancer cells without harming healthy tissues. In the current study, we have applied a refined version of the workflow to specifically predict both, common essential genes across various cancer types, and melanoma-specific essential genes that could potentially be used as drug targets for melanoma treatment. The in silico single gene deletion step was adapted to simulate the knock-out of all targets of a drug on an objective function such as growth or energy balance. Based on publicly available, and in-house, large-scale transcriptomic data metabolic models for melanoma were reconstructed enabling the prediction of 28 candidate drugs and estimating their respective efficacy. Twelve highly efficacious drugs with low half-maximal inhibitory concentration values for the treatment of other cancers, which are not yet approved for melanoma treatment, were used for in vitro validation using melanoma cell lines. Combination of the top 4 out of 6 promising candidate drugs with BRAF or MEK inhibitors, partially showed synergistic growth inhibition compared to individual BRAF/MEK inhibition. Hence, the repurposing of drugs may enable an increase in therapeutic options e.g., for non-responders or upon acquired resistance to conventional melanoma treatments.


Subject(s)
Melanoma , Proto-Oncogene Proteins B-raf , Humans , Proto-Oncogene Proteins B-raf/metabolism , Neoplasm Recurrence, Local/drug therapy , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mitogen-Activated Protein Kinase Kinases , Drug Development , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor
4.
Cells ; 11(16)2022 08 10.
Article in English | MEDLINE | ID: mdl-36010563

ABSTRACT

Brain disorders represent 32% of the global disease burden, with 169 million Europeans affected. Constraint-based metabolic modelling and other approaches have been applied to predict new treatments for these and other diseases. Many recent studies focused on enhancing, among others, drug predictions by generating generic metabolic models of brain cells and on the contextualisation of the genome-scale metabolic models with expression data. Experimental flux rates were primarily used to constrain or validate the model inputs. Bi-cellular models were reconstructed to study the interaction between different cell types. This review highlights the evolution of genome-scale models for neurodegenerative diseases and glioma. We discuss the advantages and drawbacks of each approach and propose improvements, such as building bi-cellular models, tailoring the biomass formulations for glioma and refinement of the cerebrospinal fluid composition.


Subject(s)
Brain Neoplasms , Glioma , Neurodegenerative Diseases , Biomass , Brain Neoplasms/genetics , Genome, Human , Humans , Neurodegenerative Diseases/genetics
5.
Methods Mol Biol ; 2535: 221-240, 2022.
Article in English | MEDLINE | ID: mdl-35867234

ABSTRACT

Metabolic modeling is a powerful computational tool to analyze metabolism. It has not only been used to identify metabolic rewiring strategies in cancer but also to predict drug targets and candidate drugs for repurposing. Here, we will elaborate on the reconstruction of context-specific metabolic models of cancer using rFASTCORMICS and the subsequent prediction of drugs for repurposing using our drug prediction workflow.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/therapeutic use , Computational Biology , Drug Repositioning , Humans , Neoplasms/drug therapy , Workflow
6.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35215292

ABSTRACT

The multi-target effects of natural products allow us to fight complex diseases like cancer on multiple fronts. Unlike docking techniques, network-based approaches such as genome-scale metabolic modelling can capture multi-target effects. However, the incompleteness of natural product target information reduces the prediction accuracy of in silico gene knockout strategies. Here, we present a drug selection workflow based on context-specific genome-scale metabolic models, built from the expression data of cancer cells treated with natural products, to predict cell viability. The workflow comprises four steps: first, in silico single-drug and drug combination predictions; second, the assessment of the effects of natural products on cancer metabolism via the computation of a dissimilarity score between the treated and control models; third, the identification of natural products with similar effects to the approved drugs; and fourth, the identification of drugs with the predicted effects in pathways of interest, such as the androgen and estrogen pathway. Out of the initial 101 natural products, nine candidates were tested in a 2D cell viability assay. Bruceine D, emodin, and scutellarein showed a dose-dependent inhibition of MCF-7 and Hs 578T cell proliferation with IC50 values between 0.7 to 65 µM, depending on the drug and cell line. Bruceine D, extracted from Brucea javanica seeds, showed the highest potency.

7.
PLoS Comput Biol ; 18(1): e1009711, 2022 01.
Article in English | MEDLINE | ID: mdl-35085230

ABSTRACT

Project-based learning (PBL) is a dynamic student-centred teaching method that encourages students to solve real-life problems while fostering engagement and critical thinking. Here, we report on a PBL course on metabolic network modelling that has been running for several years within the Master in Integrated Systems Biology (MISB) at the University of Luxembourg. This 2-week full-time block course comprises an introduction into the core concepts and methods of constraint-based modelling (CBM), applied to toy models and large-scale networks alongside the preparation of individual student projects in week 1 and, in week 2, the presentation and execution of these projects. We describe in detail the schedule and content of the course, exemplary student projects, and reflect on outcomes and lessons learned. PBL requires the full engagement of students and teachers and gives a rewarding teaching experience. The presented course can serve as a role model and inspiration for other similar courses.


Subject(s)
Metabolic Networks and Pathways , Problem-Based Learning , Systems Biology/education , Humans , Students , Thinking
8.
iScience ; 24(11): 103331, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34723158

ABSTRACT

The 2019 coronavirus disease (COVID-19) became a worldwide pandemic with currently no approved effective antiviral drug. Flux balance analysis (FBA) is an efficient method to analyze metabolic networks. Here, FBA was applied on human lung cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to reposition metabolic drugs and drug combinations against the virus replication within the host tissue. Making use of expression datasets of infected lung tissue, genome-scale COVID-19-specific metabolic models were reconstructed. Then, host-specific essential genes and gene pairs were determined through in silico knockouts that permit reducing the viral biomass production without affecting the host biomass. Key pathways that are associated with COVID-19 severity in lung tissue are related to oxidative stress, ferroptosis, and pyrimidine metabolism. By in silico screening of Food and Drug Administration (FDA)-approved drugs on the putative disease-specific essential genes and gene pairs, 85 drugs and 52 drug combinations were predicted as promising candidates for COVID-19 (https://github.com/sysbiolux/DCcov).

9.
BMC Bioinformatics ; 20(1): 741, 2019 Dec 30.
Article in English | MEDLINE | ID: mdl-31888443

ABSTRACT

BACKGROUND: Currently, formal mechanisms for bioinformatics support are limited. The H3Africa Bioinformatics Network has implemented a public and freely available Helpdesk (HD), which provides generic bioinformatics support to researchers through an online ticketing platform. The following article reports on the H3ABioNet HD (H3A-HD)'s development, outlining its design, management, usage and evaluation framework, as well as the lessons learned through implementation. RESULTS: The H3A-HD evaluated using automatically generated usage logs, user feedback and qualitative ticket evaluation. Evaluation revealed that communication methods, ticketing strategies and the technical platforms used are some of the primary factors which may influence the effectivity of HD. CONCLUSION: To continuously improve the H3A-HD services, the resource should be regularly monitored and evaluated. The H3A-HD design, implementation and evaluation framework could be easily adapted for use by interested stakeholders within the Bioinformatics community and beyond.


Subject(s)
Computational Biology/methods , User-Computer Interface , Africa , Genomics , Research
10.
Front Biosci (Elite Ed) ; 11(1): 61-78, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30468638

ABSTRACT

The region encoding the N-terminal of human ß2-adrenergic receptor gene (ADRB2) shows several polymorphisms. To this end, we studied change in susceptibility and/or response to therapy in 175 asthmatic children and adolescents by the two most common variants of the ADRB2 gene namely, rs1042713 (Gly16Arg) and rs1042714 (Gln27Glu). Although, the variants did not correlate with risk of development nor with the severity of the asthma, Gly16/Glu27 haplotype in homozygous individuals conferred protection against development of asthma and was associated with a lower frequency of dyspnea and sputum production. In contrast, the Arg16/Gln27 haplotype was associated with a better response to treatment. These findings show that the risk of development of asthma or response to treatment can be, respectively, deciphered by the detection of both rs1042713 and rs1042714 variants in ADRB2 gene.


Subject(s)
Asthma/genetics , Polymorphism, Genetic , Receptors, Adrenergic, beta-2/genetics , Adolescent , Child , Child, Preschool , Female , Genetic Predisposition to Disease , Haplotypes , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...