Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 325
Filter
1.
Brain ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38938188

ABSTRACT

Charcot-Marie-Tooth (CMT) disease is a neuromuscular disorder affecting the peripheral nervous system. The diagnostic yield in demyelinating CMT (CMT1) is typically ∼80-95%, of which at least 60% is due to the PMP22 gene duplication. The remainder of CMT1 is more genetically heterogeneous. We used whole exome and whole genome sequencing data included in the GENESIS database to investigate novel causal genes and mutations in a cohort of ∼2,670 individuals with CMT neuropathy. A recurrent heterozygous missense variant p.Thr1424Met in the recently described CMT gene ITPR3, encoding IP3R3 (inositol 1,4,5-trisphosphate receptor 3) was identified. This previously reported p.Thr1424Met change was present in 33 affected individuals from nine unrelated families from multiple populations, representing an unusual recurrence rate at a mutational hotspot, strengthening the gene-disease relationship (GnomADv4 allele frequency 1.76e-6). Sanger sequencing confirmed the co-segregation of the CMT phenotype with the presence of the mutation in autosomal dominant and de novo inheritance patterns, including a four-generation family with multiple affected second-degree cousins. Probands from all families presented with slow nerve conduction velocities, matching the diagnostic category of CMT1. Remarkably, we observed a uniquely variable clinical phenotype for age at onset and phenotype severity in p.Thr1424Met carrying patients, even within families. Finally, we present data supportive of a dominant-negative effect of the p.Thr1424Met mutation with associated changes in protein expression in patient-derived cells.

3.
J Peripher Nerv Syst ; 29(2): 262-274, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38860315

ABSTRACT

BACKGROUND: Loss-of-function variants in MME (membrane metalloendopeptidase) are a known cause of recessive Charcot-Marie-Tooth Neuropathy (CMT). A deep intronic variant, MME c.1188+428A>G (NM_000902.5), was identified through whole genome sequencing (WGS) of two Australian families with recessive inheritance of axonal CMT using the seqr platform. MME c.1188+428A>G was detected in a homozygous state in Family 1, and in a compound heterozygous state with a known pathogenic MME variant (c.467del; p.Pro156Leufs*14) in Family 2. AIMS: We aimed to determine the pathogenicity of the MME c.1188+428A>G variant through segregation and splicing analysis. METHODS: The splicing impact of the deep intronic MME variant c.1188+428A>G was assessed using an in vitro exon-trapping assay. RESULTS: The exon-trapping assay demonstrated that the MME c.1188+428A>G variant created a novel splice donor site resulting in the inclusion of an 83 bp pseudoexon between MME exons 12 and 13. The incorporation of the pseudoexon into MME transcript is predicted to lead to a coding frameshift and premature termination codon (PTC) in MME exon 14 (p.Ala397ProfsTer47). This PTC is likely to result in nonsense mediated decay (NMD) of MME transcript leading to a pathogenic loss-of-function. INTERPRETATION: To our knowledge, this is the first report of a pathogenic deep intronic MME variant causing CMT. This is of significance as deep intronic variants are missed using whole exome sequencing screening methods. Individuals with CMT should be reassessed for deep intronic variants, with splicing impacts being considered in relation to the potential pathogenicity of variants.


Subject(s)
Charcot-Marie-Tooth Disease , Metalloendopeptidases , RNA Splicing , Adult , Female , Humans , Male , Charcot-Marie-Tooth Disease/genetics , Introns , Metalloendopeptidases/genetics , Mutation , Pedigree
4.
Parkinsonism Relat Disord ; 124: 107010, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772265

ABSTRACT

PURPOSE: We investigated the contribution of genomic data reanalysis to the diagnostic yield of dystonia patients who remained undiagnosed after prior genome sequencing. METHODS: Probands with heterogeneous dystonia phenotypes who underwent initial genome sequencing (GS) analysis in 2019 were included in the reanalysis, which was performed through gene-specific discovery collaborations and systematic genomic data reanalysis. RESULTS: Initial GS analysis in 2019 (n = 111) identified a molecular diagnosis in 11.7 % (13/111) of cases. Reanalysis between 2020 and 2023 increased the diagnostic yield by 7.2 % (8/111); 3.6 % (4/111) through focused gene-specific clinical correlation collaborative efforts [VPS16 (two probands), AOPEP and POLG], and 3.6 % (4/111) by systematic reanalysis completed in 2023 [NUS1 (two probands) and DDX3X variants, and a microdeletion encompassing VPS16]. Seven of these patients had a high phenotype-based dystonia score ≥3. Notable unverified findings in four additional cases included suspicious variants of uncertain significance in FBXL4 and EIF2AK2, and potential phenotypic expansion associated with SLC2A1 and TREX1 variants. CONCLUSION: GS data reanalysis increased the diagnostic yield from 11.7 % to 18.9 %, with potential extension up to 22.5 %. While optimal timing for diagnostic reanalysis remains to be determined, this study demonstrates that periodic re-interrogation of dystonia GS datasets can provide additional genetic diagnoses, which may have significant implications for patients and their families.


Subject(s)
Dystonia , Dystonic Disorders , Humans , Male , Female , Adult , Dystonic Disorders/genetics , Dystonic Disorders/diagnosis , Dystonia/genetics , Dystonia/diagnosis , Middle Aged , Young Adult , Whole Genome Sequencing , Adolescent , Child , Phenotype
5.
Gastroenterol Clin North Am ; 53(2): 233-244, 2024 06.
Article in English | MEDLINE | ID: mdl-38719375

ABSTRACT

Outcomes for patients with chronic intestinal failure have improved with organization of experts into multidisciplinary teams delivering care in intestinal rehabilitation programs. There have been improvements in understanding of intestinal failure complications as well as development of newer therapies that have amplified the improvements in survival. In spite of this encouraging trend, patients who fail PN are often referred too late for intestinal transplantation. The author proposes a more rational framework that might allow earlier identification of intestinal failure patients at risk for PN-failure, who could appropriately be considered earlier for intestinal transplantation with improvements in overall outcomes.


Subject(s)
Intestines , Humans , Intestines/transplantation , Intestinal Failure/therapy , Parenteral Nutrition , Patient Selection
6.
Semin Thromb Hemost ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38692283

ABSTRACT

Genetic sequencing technologies are evolving at a rapid pace with major implications for research and clinical practice. In this review, the authors provide an updated overview of next-generation sequencing (NGS) and emerging methodologies. NGS has tremendously improved sequencing output while being more time and cost-efficient in comparison to Sanger sequencing. The authors describe short-read sequencing approaches, such as sequencing by synthesis, ion semiconductor sequencing, and nanoball sequencing. Third-generation long-read sequencing now promises to overcome many of the limitations of short-read sequencing, such as the ability to reliably resolve repeat sequences and large genomic rearrangements. By combining complementary methods with massively parallel DNA sequencing, a greater insight into the biological context of disease mechanisms is now possible. Emerging methodologies, such as advances in nanopore technology, in situ nucleic acid sequencing, and microscopy-based sequencing, will continue the rapid evolution of this area. These new technologies hold many potential applications for hematological disorders, with the promise of precision and personalized medical care in the future.

7.
Front Immunol ; 15: 1383476, 2024.
Article in English | MEDLINE | ID: mdl-38799439

ABSTRACT

None of the typhoid Vi Polysaccharide (ViPS) subunit vaccines incorporate adjuvants, and the immunogenicity of ViPS vaccines (e.g. Typbar TCV® and Typhim Vi®) is in part due to associated TLR4 ligands such as endotoxin present in these vaccines. Since endotoxin content in vaccines is variable and kept very low due to inherent toxicity, it was hypothesized that incorporating a defined amount of a non-toxic TLR4-ligand such as monophosphoryl lipid A in ViPS vaccines would improve their immunogenicity. To test this hypothesis, a monophosphoryl lipid A-based adjuvant formulation named Turbo was developed. Admixing Turbo with Typbar TCV® (ViPS-conjugated to tetanus toxoid) increased the levels of anti-ViPS IgM, IgG1, IgG2b, IgG2a/c, and IgG3 in inbred and outbred mice. In infant mice, a single immunization with Turbo adjuvanted Typbar TCV® resulted in a significantly increased and durable IgG response and improved the control of bacterial burden compared to mice immunized without Turbo. Similarly, when adjuvanted with Turbo, the antibody response and control of bacteremia were also improved in mice immunized with Typhim Vi®, an unconjugated vaccine. The immunogenicity of unconjugated ViPS is inefficient in young mice and is lost in adult mice when immunostimulatory ligands in ViPS are removed. Nevertheless, when adjuvanted with Turbo, poorly immunogenic ViPS induced a robust IgG response in young and adult mice, and this was observed even under antigen-limiting conditions. These data suggest that incorporation of Turbo as an adjuvant will make typhoid vaccines more immunogenic regardless of their intrinsic immunogenicity or conjugation status and maximize the efficacy across all ages.


Subject(s)
Adjuvants, Immunologic , Antibodies, Bacterial , Lipid A , Toll-Like Receptor 4 , Typhoid Fever , Typhoid-Paratyphoid Vaccines , Vaccines, Subunit , Animals , Typhoid-Paratyphoid Vaccines/immunology , Typhoid-Paratyphoid Vaccines/administration & dosage , Mice , Toll-Like Receptor 4/immunology , Vaccines, Subunit/immunology , Vaccines, Subunit/administration & dosage , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Adjuvants, Immunologic/administration & dosage , Lipid A/analogs & derivatives , Lipid A/immunology , Typhoid Fever/prevention & control , Typhoid Fever/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Female , Ligands , Polysaccharides, Bacterial/immunology , Immunogenicity, Vaccine , Adjuvants, Vaccine , Salmonella typhi/immunology , Mice, Inbred BALB C
9.
Neurol Genet ; 10(3): e200152, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685974

ABSTRACT

Objectives: To report novel biallelic PI4KA variants in a family presenting with pure hereditary spastic paraparesis. Methods: Two affected sisters presented with unsolved hereditary spastic paraparesis and underwent clinical and imaging assessments. This was followed by short-read next-generation sequencing. Results: Analysis of next-generation sequencing data uncovered compound heterozygous variants in PI4KA (NM_058004.4: c.[3883C>A];[5785A>C]; p.[(His1295Asn);(Thr1929Pro)]. Using ACMG guidelines, both variants were classified as likely pathogenic. Discussion: Here, next-generation sequencing revealed 2 novel compound heterozygous variants in the phosphatidylinositol 4-kinase alpha gene (PI4KA) in 2 sisters presenting with progressive pure hereditary spastic paraparesis. Pathogenic variants in PI4KA have previously been associated with a spectrum of disorders including autosomal recessive perisylvian polymicrogyria, with cerebellar hypoplasia, arthrogryposis, and pure spastic paraplegia. The cases presented in this study expand the phenotypic spectrum associated with PI4KA variants and contribute new likely pathogenic variants for testing in patients with otherwise unsolved hereditary spastic paraparesis.

10.
Immunohorizons ; 8(4): 317-325, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38625118

ABSTRACT

Activation of the adaptive immune system requires the engagement of costimulatory pathways in addition to B and T cell Ag receptor signaling, and adjuvants play a central role in this process. Many Gram-negative bacterial polysaccharide vaccines, including the tetravalent meningococcal conjugate vaccines (MCV4) and typhoid Vi polysaccharide vaccines, do not incorporate adjuvants. The immunogenicity of typhoid vaccines is due to the presence of associated TLR4 ligands in these vaccines. Because the immunogenicity of MCV4 is poor and requires boosters, I hypothesized that TLR4 ligands are absent in MCV4 and that incorporation of a TLR4 ligand-based adjuvant would improve their immunogenicity. Consistent with this hypothesis, two Food and Drug Administration-approved MCV4 vaccines, MENVEO and MenQuadfi, lack TLR4 ligands. Admixing monophosphoryl lipid A, a TLR4 ligand-based adjuvant formulation named "Turbo" with MCV4 induced significantly improved IgM and IgG responses to all four meningococcal serogroup polysaccharides in adult and aged mice after a single immunization. Furthermore, in infant mice, a single booster was sufficient to promote a robust IgG response and 100% seroconversion when MCV4 was adjuvanted with Turbo. Turbo upregulated the expression of the costimulatory molecules CD40 and CD86 on B cells, and Turbo-driven adjuvanticity is lost in mice deficient in CD40 and CD86. These data suggest that Turbo induces the required costimulatory molecules for its adjuvant activity and that incorporation of Turbo could make bacterial polysaccharide vaccines more immunogenic, minimize booster requirements, and be cost-effective, particularly for those individuals in low- and middle-income and disease-endemic countries.


Subject(s)
Adjuvants, Immunologic , Lipid A/analogs & derivatives , Toll-Like Receptor 4 , Humans , United States , Adult , Infant , Animals , Mice , Vaccines, Combined , Ligands , Immunoglobulin G
11.
medRxiv ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38529492

ABSTRACT

Until recently, about three-quarters of all monogenic Parkinson's disease (PD) studies were performed in European/White ancestry, thereby severely limiting our insights into genotype-phenotype relationships at global scale. The first systematic approach to embrace monogenic PD worldwide, The Michael J. Fox Foundation Global Monogenic PD (MJFF GMPD) Project, contacted authors of publications reporting individuals carrying pathogenic variants in known PD-causing genes. In contrast, the Global Parkinson's Genetics Program's (GP2) Monogenic Network took a different approach by targeting PD centers not yet represented in the medical literature. Here, we describe combining both efforts in a "merger project" resulting in a global monogenic PD cohort with build-up of a sustainable infrastructure to identify the multi-ancestry spectrum of monogenic PD and enable studies of factors modifying penetrance and expression of monogenic PD. This effort demonstrates the value of future research based on team science approaches to generate comprehensive and globally relevant results.

13.
Immunohorizons ; 8(1): 29-34, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38180344

ABSTRACT

Activation of B cells and T cells requires the engagement of costimulatory signaling pathways in addition to Ag receptor signaling for efficient immune responses. None of the typhoid Vi polysaccharide (ViPS) subunit vaccines contains adjuvants that could activate costimulatory signaling pathways, yet these vaccines are very immunogenic. I hypothesized that residual TLR ligands present in the ViPS preparation used for making typhoid subunit vaccines account for the robust immune response generated by these vaccines. I show the presence of endotoxin, a potent agonist of TLR4, in ViPS preparations and ViPS vaccines. Furthermore, I found that ViPS obtained from various sources induces the production of proinflammatory cytokines such as IL-6 from mouse peritoneal exudate cells. Unconjugated and tetanus toxoid-conjugated ViPS vaccines activate human and mouse TLR4. Mice deficient in TLR4 or the signaling adaptors MyD88 and Trif (Toll/IL-1R domain-containing adapter inducing IFN-ß) are severely impaired in generating anti-ViPS responses to these vaccines. Elimination of the TLR4 agonist in ViPS preparation resulted in the loss of immunogenicity, and addition of lipid A, a known TLR4 agonist, restored the immunogenicity. These data highlight the importance of associated TLR ligands in the immunogenicity of ViPS subunit vaccines.


Subject(s)
Immunogenicity, Vaccine , Toll-Like Receptor 4 , Typhoid Fever , Typhoid-Paratyphoid Vaccines , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing , Adjuvants, Immunologic/pharmacology , B-Lymphocytes , Ligands , Typhoid Fever/prevention & control , Typhoid-Paratyphoid Vaccines/immunology , Vaccines, Subunit/immunology
14.
Clin Transplant ; 38(1): e15228, 2024 01.
Article in English | MEDLINE | ID: mdl-38289880

ABSTRACT

INTRODUCTION: Kidney dysfunction is a known complication of intestinal transplantation; however, the rate of development and risk factors for chronic kidney disease (CKD) remain poorly defined. METHODS: This was a single-center retrospective review of isolated adult intestinal allograft recipients from 2011 to 2019. Patients who died or experienced graft loss within 1-year or had a prior transplant were excluded. Estimated glomerular filtration rate (eGFR) was calculated using the CKD-EPI equation at 0-, 6- and 12-months post-transplant, and multivariable linear regression was performed to identify variables associated with adjusted eGFR at 1-year. Independent variables included age, ethnicity, BMI, history of diabetes/hypertension, vasopressor use, TPN and stoma days, urinary or bloodstream infections, intravenous contrast exposure, rejection, concomitant immunosuppression, and time above the therapeutic range of tacrolimus. Variables with a p < .1 in univariate analysis were considered for multivariable modeling. RESULTS: Thirty-three patients were included with a mean age of 43.9 ± 13.0. A mean 42.3% decline in eGFR was observed at 1-year post-transplant, with 15.2% of patients developing new stage 4/5 CKD. Factors associated with a greater decline in adjusted eGFR in the univariate model included increasing age, decreased BMI, stoma days, and vasopressor use. In the adjusted multivariable model patient age (ß = -.77, p < .01) and stoma days (ß = -.06, p < .01) remained significant. Tacrolimus and sirolimus exposure were not associated with decline in eGFR at 1 year. CONCLUSIONS: Renal dysfunction is common following intestinal transplantation. The need for stoma creation should be carefully considered, and reversal should be performed when feasible for renal protection.


Subject(s)
Kidney Failure, Chronic , Kidney Transplantation , Renal Insufficiency, Chronic , Adult , Humans , Middle Aged , Infant , Tacrolimus/adverse effects , Immunosuppressive Agents/therapeutic use , Kidney Transplantation/adverse effects , Risk Factors , Glomerular Filtration Rate , Renal Insufficiency, Chronic/etiology , Kidney Failure, Chronic/etiology , Graft Rejection/etiology , Graft Rejection/prevention & control , Retrospective Studies
15.
Article in English | MEDLINE | ID: mdl-38222898

ABSTRACT

Currently, pathogenic variants in more than 500 different genes are known to cause various movement disorders. The increasing accessibility and reducing cost of genetic testing has resulted in increasing clinical use of genetic testing for the diagnosis of movement disorders. However, the optimal use case(s) for genetic testing at a patient level remain ill-defined. Here, we review the utility of genetic testing in patients with movement disorders and also highlight current challenges and limitations that need to be considered when making decisions about genetic testing in clinical practice. Highlights: The utility of genetic testing extends across multiple clinical and non-clinical domains. Here we review different aspects of the utility of genetic testing for movement disorders and the numerous associated challenges and limitations. These factors should be weighed on a case-by-case basis when requesting genetic tests in clinical practice.


Subject(s)
Genetic Testing , Movement Disorders , Humans , Movement Disorders/diagnosis , Movement Disorders/genetics
16.
Cerebellum ; 23(1): 268-277, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36696030

ABSTRACT

Autosomal dominant variants in ELOVL4 cause spinocerebellar ataxia type 34 (SCA34; ATX-ELOVL4), classically associated with a skin condition known as erythrokeratoderma. Here, we report a large Italian-Maltese-Australian family with spinocerebellar ataxia. Notably, while there were dermatological manifestations (eczema), erythrokeratoderma was not present. Using a next-generation sequencing panel, we identified a previously reported ELOVL4 variant, NM_022726.4: c.698C > T p.(Thr233Met). The variant was initially classified as a variant of uncertain significance; however, through segregation studies, we reclassified the variant as likely pathogenic. We next identified an individual from another family (Algerian-Maltese-Australian) with the same ELOVL4 variant with spinocerebellar ataxia but without dermatological manifestations. We subsequently performed the first dedicated literature review of ELOVL4-associated ataxia to gain further insights into genotype-phenotype relationships. We identified a total of 60 reported cases of SCA34 to date. The majority had gait ataxia (88.3%), limb ataxia (76.7%), dysarthria (63.3%), and nystagmus (58.3%). Of note, skin lesions related to erythrokeratoderma were seen in a minority of cases (33.3%). Other extracerebellar manifestations included pyramidal tract signs, autonomic disturbances, retinitis pigmentosa, and cognitive impairment. For brain MRI data, cerebellar atrophy was seen in all cases (100%), whereas the hot cross bun sign (typically associated with multiple system atrophy type C) was seen in 32.4% of cases. Our family study and literature review highlight the variable phenotypic spectrum of SCA34. Importantly, it shows that erythrokeratoderma is not found in most cases and that, while a dermatological assessment may be helpful in these patients, SCA34 diagnosis should be considered irrespective of dermatological manifestations.


Subject(s)
Cerebellar Ataxia , Skin Diseases, Genetic , Spinocerebellar Ataxias , Humans , Ataxia/genetics , Eye Proteins/genetics , Membrane Proteins/genetics , Spinocerebellar Ataxias/diagnostic imaging , Spinocerebellar Ataxias/genetics
17.
Am J Obstet Gynecol MFM ; 6(2): 101251, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38070679

ABSTRACT

This clinical practice guideline on the supply of the omega-3 docosahexaenoic acid and eicosapentaenoic acid in pregnant women for risk reduction of preterm birth and early preterm birth was developed with support from several medical-scientific organizations, and is based on a review of the available strong evidence from randomized clinical trials and a formal consensus process. We concluded the following. Women of childbearing age should obtain a supply of at least 250 mg/d of docosahexaenoic+eicosapentaenoic acid from diet or supplements, and in pregnancy an additional intake of ≥100 to 200 mg/d of docosahexaenoic acid. Pregnant women with a low docosahexaenoic acid intake and/or low docosahexaenoic acid blood levels have an increased risk of preterm birth and early preterm birth. Thus, they should receive a supply of approximately 600 to 1000 mg/d of docosahexaenoic+eicosapentaenoic acid, or docosahexaenoic acid alone, given that this dosage showed significant reduction of preterm birth and early preterm birth in randomized controlled trials. This additional supply should preferably begin in the second trimester of pregnancy (not later than approximately 20 weeks' gestation) and continue until approximately 37 weeks' gestation or until childbirth if before 37 weeks' gestation. Identification of women with inadequate omega-3 supply is achievable by a set of standardized questions on intake. Docosahexaenoic acid measurement from blood is another option to identify women with low status, but further standardization of laboratory methods and appropriate cutoff values is needed. Information on how to achieve an appropriate intake of docosahexaenoic acid or docosahexaenoic+eicosapentaenoic acid for women of childbearing age and pregnant women should be provided to women and their partners.


Subject(s)
Fatty Acids, Omega-3 , Premature Birth , Female , Infant, Newborn , Pregnancy , Humans , Fatty Acids, Omega-3/therapeutic use , Docosahexaenoic Acids/therapeutic use , Premature Birth/epidemiology , Premature Birth/etiology , Premature Birth/prevention & control , Eicosapentaenoic Acid , Risk Reduction Behavior
19.
Genes (Basel) ; 14(9)2023 09 03.
Article in English | MEDLINE | ID: mdl-37761896

ABSTRACT

Hereditary spastic paraplegia (HSP) is characterized by progressive lower limb spasticity. There is no disease-modifying treatment currently available. Therefore, standardized, validated outcome measures to facilitate clinical trials are urgently needed. We performed a scoping review of outcome measures and biomarkers for HSP to provide recommendations for future studies and identify areas for further research. We searched Embase, Medline, Scopus, Web of Science, and the Central Cochrane database. Seventy studies met the inclusion criteria, and eighty-three outcome measures were identified. The Spastic Paraplegia Rating Scale (SPRS) was the most widely used (27 studies), followed by the modified Ashworth Scale (18 studies) and magnetic resonance imaging (17 studies). Patient-reported outcome measures (PROMs) were infrequently used to assess treatment outcomes (28% of interventional studies). Diffusion tensor imaging, gait analysis and neurofilament light chain levels were the most promising biomarkers in terms of being able to differentiate patients from controls and correlate with clinical disease severity. Overall, we found variability and inconsistencies in use of outcome measures with a paucity of longitudinal data. We highlight the need for (1) a standardized set of core outcome measures, (2) validation of existing biomarkers, and (3) inclusion of PROMs in HSP clinical trials.


Subject(s)
Spastic Paraplegia, Hereditary , Humans , Spastic Paraplegia, Hereditary/diagnosis , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/therapy , Diffusion Tensor Imaging , Paraplegia , Biomarkers , Outcome Assessment, Health Care
20.
Front Neurosci ; 17: 1231584, 2023.
Article in English | MEDLINE | ID: mdl-37766787

ABSTRACT

SPG7 is the most common form of autosomal recessive hereditary spastic paraplegia (HSP). There is a lack of HSP-SPG7 human neuronal models to understand the disease mechanism and identify new drug treatments. We generated a human neuronal model of HSP-SPG7 using induced pluripotent stem (iPS) cell technology. We first generated iPS cells from three HSP-SPG7 patients carrying different disease-causing variants and three healthy controls. The iPS cells were differentiated to form neural progenitor cells (NPCs) and then from NPCs to mature cortical neurons. Mitochondrial and neuronal defects were measured using a high throughout imaging and analysis-based assay in live cells. Our results show that compared to control NPCs, patient NPCs had aberrant mitochondrial morphology with increased mitochondrial size and reduced membrane potential. Patient NPCs develop to form mature cortical neurons with amplified mitochondrial morphology and functional defects along with defects in neuron morphology - reduced neurite complexity and length, reduced synaptic gene, protein expression and activity, reduced viability and increased axonal degeneration. Treatment of patient neurons with Bz-423, a mitochondria permeability pore regulator, restored the mitochondrial and neurite morphological defects and mitochondrial membrane potential back to control neuron levels and rescued the low viability and increased degeneration in patient neurons. This study establishes a direct link between mitochondrial and neuronal defects in HSP-SPG7 patient neurons. We present a strategy for testing mitochondrial targeting drugs to rescue neuronal defects in HSP-SPG7 patient neurons.

SELECTION OF CITATIONS
SEARCH DETAIL
...