Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(6): 4212-4220, 2024 02 14.
Article in English | MEDLINE | ID: mdl-38295028

ABSTRACT

The genomes of 40 strains of Nocardia, most of which were associated with life-threatening human infections, encode a highly conserved assembly line polyketide synthase designated as the NOCAP (NOCardiosis-Associated Polyketide) synthase, whose product structure has been previously described. Here we report the structure and inferred biosynthetic pathway of the fully decorated glycolipid natural product. Its structure reveals a fully substituted benzaldehyde headgroup harboring an unusual polyfunctional tail and an O-linked disaccharide comprising a 3-α-epimycarose and 2-O-methyl-α-rhamnose whose installation requires flavin monooxygenase-dependent hydroxylation of the polyketide product. Production of the fully decorated glycolipid was verified in cultures of two patient-derived Nocardia species. In both E. coli and Nocardia spp., the glycolipid was only detected in culture supernatants, consistent with data from genetic knockout experiments implicating roles for two dedicated proteins in installing the second sugar substituent only after the monoglycosyl intermediate is exported across the bacterial cell membrane. With the NOCAP product in hand, the stage is set for investigating the evolutionary benefit of this polyketide biosynthetic pathway for Nocardia strains capable of infecting human hosts.


Subject(s)
Biological Products , Nocardia Infections , Nocardia , Polyketides , Humans , Escherichia coli/metabolism , Polyketide Synthases/metabolism , Nocardia/metabolism , Glycolipids
2.
J Bacteriol ; 205(11): e0031023, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37905811

ABSTRACT

IMPORTANCE: With the lack of new antibiotics in the drug discovery pipeline, coupled with accelerated evolution of antibiotic resistance, new sources of antibiotics that target pathogens of clinical importance are paramount. Here, we use bacterial cytological profiling to identify the mechanism of action of the monounsaturated fatty acid (Z)-13-methyltetra-4-decenoic acid isolated from the marine bacterium Olleya marilimosa with antibacterial effects against Gram-positive bacteria. The fatty acid antibiotic was found to rapidly destabilize the cell membrane by pore formation and membrane aggregation in Bacillus subtilis, suggesting that this fatty acid may be a promising adjuvant used in combination to enhance antibiotic sensitivity.


Subject(s)
Anti-Bacterial Agents , Fatty Acids , Fatty Acids/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Gram-Positive Bacteria/metabolism , Cell Membrane/metabolism , Bacillus subtilis/metabolism , Microbial Sensitivity Tests , Gram-Negative Bacteria/metabolism
3.
Open Biol ; 13(8): 230096, 2023 08.
Article in English | MEDLINE | ID: mdl-37528731

ABSTRACT

Assembly line polyketide synthases (PKSs) are a large family of multifunctional enzymes responsible for synthesizing many medicinally relevant natural products with remarkable structural variety and biological activity. The decrease in cost of genomic sequencing paired with development of computational tools like antiSMASH presents an opportunity to survey the vast diversity of assembly line PKS. Mining the genomic data in the National Center for Biotechnology Information database, our updated catalogue (https://orphanpkscatalog2022.stanford.edu/catalog) presented in this article revealed 8799 non-redundant assembly line polyketide synthase clusters across 4083 species, representing a threefold increase over the past 4 years. Additionally, 95% of the clusters are 'orphan clusters' for which natural products are neither chemically nor biologically characterized. Our analysis indicates that the diversity of assembly line PKSs remains vastly under-explored and also highlights the promise of a genomics-driven approach to natural product discovery.


Subject(s)
Biological Products , Polyketide Synthases , Polyketide Synthases/genetics , Polyketide Synthases/chemistry , Polyketide Synthases/metabolism , Base Sequence , Genomics
5.
J Antibiot (Tokyo) ; 74(6): 370-380, 2021 06.
Article in English | MEDLINE | ID: mdl-33580212

ABSTRACT

The emergence of multi-drug resistant pathogenic bacteria represents a serious and growing threat to national healthcare systems. Most pressing is an immediate need for the development of novel antibacterial agents to treat Gram-negative multi-drug resistant infections, including the opportunistic, hospital-derived pathogen, Acinetobacter baumannii. Herein we report a naturally occurring 1,2-benzisoxazole with minimum inhibitory concentrations as low as 6.25 µg ml-1 against clinical strains of multi-drug resistant A. baumannii and investigate its possible mechanisms of action. This molecule represents a new chemotype for antibacterial agents against A. baumannii and is easily accessed in two steps via de novo synthesis. In vitro testing of structural analogs suggest that the natural compound may already be optimized for activity against this pathogen. Our results demonstrate that supplementation of 4-hydroxybenzoate in minimal media was able to reverse 1,2-benzisoxazole's antibacterial effects in A. baumannii. A search of metabolic pathways involving 4-hydroxybenzoate coupled with molecular modeling studies implicates two enzymes, chorismate pyruvate-lyase and 4-hydroxybenzoate octaprenyltransferase, as promising leads for the target of 3,6-dihydroxy-1,2-benzisoxazole.


Subject(s)
Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bradyrhizobium/metabolism , Drug Antagonism , Drug Resistance, Multiple, Bacterial/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Oxo-Acid-Lyases/antagonists & inhibitors , Oxo-Acid-Lyases/chemistry , Oxo-Acid-Lyases/metabolism , Parabens/pharmacology , Pseudomonas aeruginosa/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...