Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 48(12): 6954-6969, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32459314

ABSTRACT

Restriction endonucleases naturally target DNA duplexes. Systematic screening has identified a small minority of these enzymes that can also cleave RNA/DNA heteroduplexes and that may therefore be useful as tools for RNA biochemistry. We have chosen AvaII (G↓GWCC, where W stands for A or T) as a representative of this group of restriction endonucleases for detailed characterization. Here, we report crystal structures of AvaII alone, in specific complex with partially cleaved dsDNA, and in scanning complex with an RNA/DNA hybrid. The specific complex reveals a novel form of semi-specific dsDNA readout by a hexa-coordinated metal cation, most likely Ca2+ or Mg2+. Substitutions of residues anchoring this non-catalytic metal ion severely impair DNA binding and cleavage. The dsDNA in the AvaII complex is in the A-like form. This creates space for 2'-OH groups to be accommodated without intra-nucleic acid steric conflicts. PD-(D/E)XK restriction endonucleases of known structure that bind their dsDNA targets in the A-like form cluster into structurally similar groups. Most such enzymes, including some not previously studied in this respect, cleave RNA/DNA heteroduplexes. We conclude that A-form dsDNA binding is a good predictor for RNA/DNA cleavage activity.


Subject(s)
DNA Restriction Enzymes/ultrastructure , DNA/ultrastructure , Nucleic Acid Heteroduplexes/ultrastructure , RNA/ultrastructure , Anabaena variabilis/genetics , Binding Sites/genetics , Crystallography, X-Ray , DNA/genetics , DNA Breaks, Double-Stranded , DNA Restriction Enzymes/genetics , Metals/chemistry , Nucleic Acid Conformation , Nucleic Acid Heteroduplexes/chemistry , Nucleic Acid Heteroduplexes/genetics , RNA/genetics
2.
Nucleic Acids Res ; 46(19): 10489-10503, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30202937

ABSTRACT

TagI belongs to the recently characterized SRA-HNH family of modification-dependent restriction endonucleases (REases) that also includes ScoA3IV (Sco5333) and TbiR51I (Tbis1). Here, we present a crystal structure of dimeric TagI, which exhibits a DNA binding site formed jointly by the nuclease domains, and separate binding sites for modified DNA bases in the two protomers. The nuclease domains have characteristic features of HNH/ßßα-Me REases, and catalyze nicks or double strand breaks, with preference for /RY and RYN/RY sites, respectively. The SRA domains have the canonical fold. Their pockets for the flipped bases are spacious enough to accommodate 5-methylcytosine (5mC) or 5-hydroxymethylcytosine (5hmC), but not glucosyl-5-hydroxymethylcytosine (g5hmC). Such preference is in agreement with the biochemical determination of the TagI modification dependence and the results of phage restriction assays. The ability of TagI to digest plasmids methylated by Dcm (C5mCWGG), M.Fnu4HI (G5mCNGC) or M.HpyCH4IV (A5mCGT) suggests that the SRA domains of the enzyme are tolerant to different sequence contexts of the modified base.


Subject(s)
5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Bacterial Proteins/metabolism , Crystallography, X-Ray , DNA Restriction Enzymes/metabolism , 5-Methylcytosine/chemistry , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Base Sequence , Binding Sites/genetics , Binding, Competitive , DNA/chemistry , DNA/genetics , DNA/metabolism , DNA Restriction Enzymes/chemistry , DNA Restriction Enzymes/genetics , Models, Molecular , Nucleic Acid Conformation , Protein Binding , Protein Domains , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...