Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Cell Biol ; 84(5): 805-12, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17167545

ABSTRACT

The oxidation theory proposes that LDL oxidation is an early event in atherosclerosis and that oxidized LDL contributes to atherogenesis in triggering inflammation. In contrast to the copper-modified LDL, there are few studies using myeloperoxidase-modified LDL (Mox-LDL) as an inflammation inducer. Our aim is to test whether Mox-LDL could constitute a specific inducer of the inflammatory response. Albumin, which is the most abundant protein in plasma and which is present to an identical concentration of LDL in the intima, was used for comparison. The secretion of IL-8 by endothelial cells (Ea.hy926) and TNF-alpha by monocytes (THP-1) was measured in the cell medium after exposure of these cells to native LDL, native albumin, Mox-LDL, or Mox-albumin. We observed that Mox-LDL induced a 1.5- and 2-fold increase (ANOVA; P < 0.001) in IL-8 production at 100 microg/mL and 200 microg/mL, respectively. The incubation of THP-1 cells with Mox-LDL (100 microg/mL) increased the production of TNF-alpha 2-fold over the control. Native LDL, albumin, and Mox-albumin showed no effect in either cellular types. The myeloperoxidase-modified LDL increase in cytokine release by endothelial and monocyte cells and by firing both local and systemic inflammation could induce atherogenesis and its development.


Subject(s)
Inflammation Mediators/physiology , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/physiology , Peroxidase/metabolism , Peroxidase/physiology , Albumins/metabolism , Cells, Cultured , Copper/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Humans , Inflammation/metabolism , Inflammation Mediators/metabolism , Interleukin-8/metabolism , Monocytes/drug effects , Monocytes/metabolism , Oxidation-Reduction/drug effects , Tumor Necrosis Factor-alpha/metabolism
2.
Shock ; 19(2): 108-12, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12578116

ABSTRACT

The objective of this study was to determine whether the serum of patients with sepsis could alter the capability of healthy human peripheral blood mononuclear cells (PBMC) to synthesize cAMP in response to beta-adrenergic stimulation and to evaluate the involvement of the inhibitory pathway (Gi) of adenylyl cyclase in the sepsis-induced alteration of beta-adrenergic signaling. First, PBMC from a healthy donor were incubated for 24 h in serum-containing medium according to three culture conditions: serum alone, serum with pertussis toxin, and serum with propranolol. Second, PBMC were stimulated with 10(-5) M isoproterenol or 10(-6) M forskolin, and measurement of cyclic adenosine monophosphate (cAMP) intracellular accumulation was performed. Serum samples were obtained from three groups of subjects: 14 patients with severe sepsis, 21 patients with septic shock, and 10 healthy control subjects. Basal and forskolin-stimulated cAMP levels were similar in PBMC cultured in control or in septic serum. Isoproterenol-stimulated accumulation was reduced in PBMC preincubated in septic serum. The lowest cAMP levels were found after exposure to serum from patients with septic shock. The addition of pertussis toxin in the incubation medium constantly increased cAMP response to isoproterenol, but more significantly in PBMC exposed to septic serum. Incubation in the presence of propranolol had no significant effect. The serum of patients with sepsis contained soluble depressant substances that inhibited adenylyl cyclase activation by beta-adrenergic agonists. Septic shock serum exhibited the most potent inhibitory effect. Hyperactivation of the Gi pathway of adenylyl cyclase was mainly responsible for the altered transmembrane beta-adrenergic signaling.


Subject(s)
Adenylyl Cyclases/metabolism , Leukocytes, Mononuclear/metabolism , Receptors, Adrenergic, beta/metabolism , Shock, Septic/blood , Signal Transduction , Adult , Aged , Cells, Cultured , Cyclic AMP/metabolism , Female , Humans , Leukocytes, Mononuclear/microbiology , Male , Middle Aged , Shock, Septic/microbiology , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...