Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 309: 119770, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35841996

ABSTRACT

In this research, a novel CoFe2O4-GO (Graphen Oxide) resulting from the combination of high applicable magnetic and organic base materials and synthesized with a simple and fast co-precipitation route was synthesized for the REEs (Rare Earth Elements) extraction. This adsorbent could remove the La3+, Ce3+, Nd3+ and Eu3+ by maximum adsorption capacity of 625, 626, 714.2, 1111.2 mg/g at optimized pH = 6, respectively. A data-driven model was obtained using Group Method of Data Handling (GMDH)-based Neural Network to estimate the adsorption capacity of these LREEs as a function of time, pH, temperature, adsorbent ζ (zeta)- potential, initial concentration of lanthanides ions, and ε which is defined by the physico-chemical properties of lanthanides. The results clearly indicated that the model estimate the experimental values with good deviation (mostly less than 10%) and it can be used for the prediction of the results from other similar researches with less than 25% deviation. The results of sensitivity analysis indicated that the adsorption capacity is more sensitive to pH of the solution, temperature, and ε. Finally, the desorption studies showed an excellent removal efficiency (97%) at least for three adsorption-desorption cycles. These results claimed that the CoFe2O4-GO is a highly efficient adsorbent for the REEs extraction.


Subject(s)
Graphite , Lanthanoid Series Elements , Nanocomposites , Water Pollutants, Chemical , Adsorption , Aluminum Oxide , Ferric Compounds , Graphite/chemistry , Kinetics , Magnesium Oxide , Magnetic Phenomena , Nanocomposites/chemistry , Water , Water Pollutants, Chemical/analysis
2.
Mikrochim Acta ; 187(5): 298, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32347371

ABSTRACT

A unique and novel µ-thin-layer chromatography method based on Sn(II) ion-imprinted polymer (Sn-IIP) for speciation of tin ion species in water and plasma samples is introduced for the first time. For this purpose, N-allylthiourea (NATU) and ethylene glycol dimethacrylate (EGDMA) were copolymerized in the presence of Sn(II). The obtained polymer particles were identified using multiple techniques like BET, FT-IR, XRD, and FESEM. The effects of different variables such as pH of the solution, mobile phase composition, and IIP per CaSO4 mass ratio on the separation efficiency were also evaluated. After completion of the separation process on the plate, its surface was scanned by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Under the established optimal condition, the detection limit, relative standard deviation (RSD) of responses, and linear dynamic range (LDR) of the method were obtained as 0.3 µg L-1, 3.5%, and 0.8-900 µg L-1 for Sn(II) and 0.4 µg L-1, 4%, and 1-740 µg L-1 for Sn(IV) assay, respectively. The developed method was finally applied to the speciation of tin in various water and plasma samples. Graphical abstract Schematic representation of µ-thin-layer chromatography method based on tin(II) ion-imprinted polymer (Sn-IIP) for speciation of tin ion species in water and plasma samples and scanned separated casts by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).


Subject(s)
Lasers , Polymers/chemistry , Tin/analysis , Chromatography, Thin Layer , Humans , Mass Spectrometry , Molecular Structure , Particle Size , Surface Properties , Wastewater/chemistry
3.
Ultrason Sonochem ; 44: 129-136, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29680594

ABSTRACT

In this research, a novel Sn(II)-imprinted poly(dimethyl vinylphosphonate) nanopowder (Sn(II)-IPDMVPN) was prepared using Sn2+, dimethyl vinylphosphonate, azobis isobutyronitril and ethylene glycol dimethacrylate as the template, ligand, initiator and cross linker, respectively. The non-imprinted poly(dimethyl vinylphosphonate) nanopowder (NIPDMVPN) was also synthesized utilizing the same procedure without using SnCl2·2H2O in order to compare the results with the Sn(II)-IPDMVPN. The structure, morphology and composition of the products were characterized by XRD, SEM, EDX, XRF, BET, FT-IR and NMR techniques. Some experimental conditions including pH, eluent concentration and sample volume were optimized to maximize Sn(II) adsorption by the Sn(II)-IPDMVPN. It was found that the optimum conditions are pH = 5, 1.00 M of HNO3 as eluent and sample volume up to 50 mL. The results obtained by ICP-MS indicated that the Sn(II)-IPDMVPN had much higher adsorption capacity for Sn(II) ions (about threefold) than the NIPDMVPN. The applicability of the Sn(II)-IPDMVPN was also investigated in three different real samples. Under the best experimental conditions, the calibration graphs were linear in the range of 0.19-90 µg L-1 with a coefficient of determination (R2) of 0.990. The detection limit was calculated to be 0.06 µg L-1. The relative standard deviation (RSD) for six replicate measurements of Sn(II) at 1.00 ng mL-1 was determined to be 1.8%. The results showed that the Sn(II)-IPDMVPN-ICP-MS is a very simple, rapid, sensitive and efficient method for the determination of Sn(II) ions in water samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...