Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38399048

ABSTRACT

This study investigates the morphological changes induced by femtosecond (fs) laser pulses in arsenic trisulfide (As2S3) thin films and gold-arsenic trisulfide (Au\As2S3) heterostructures, grown by pulsed laser deposition (PLD). By means of a direct laser writing experimental setup, the films were systematically irradiated at various laser power and irradiation times to observe their effects on surface modifications. AFM was employed for morphological and topological characterization. Our results reveal a clear transition threshold between photoexpansion and photoevaporation phenomena under different femtosecond laser power regimes, occurring between 1 and 1.5 mW, irrespective of exposure time. Notably, the presence of a gold layer in the heterostructure minimally influenced this threshold. A maximum photoexpansion of 5.2% was obtained in As2S3 films, while the Au\As2S3 heterostructure exhibited a peak photoexpansion of 0.8%. The study also includes a comparative analysis of continuous-wave (cw) laser irradiation, confirming the efficiency of fs laser pulses in inducing photoexpansion effects.

2.
Nanomaterials (Basel) ; 12(19)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36234670

ABSTRACT

Within the next few years climate change is likely to become a major concern for mankind. In addition, the current electronic components shortage crisis has led to an urgent need for alternative solutions in the main industry sectors (the raw materials, manufacturing, and construction industries). The current trends of research are focused on developing smart materials with functional properties, using abundant raw materials. The energy saving efforts are sustained in the glazing industries by several approaches based on dielectric-metal-dielectric multilayer structures. The use of silver to achieve a high reflectivity in near-infrared spectral range has been proposed and is already adopted as a commercially available solution. This work is focused on developing a transparent heat reflector (THR) with prefigured optical properties, using copper as a reflective layer, a material that is more abundant and cheaper than silver. The conductive copper layers obtained by the High Power Impulse Magnetron Sputtering (HiPIMS) method were interposed between two silicon nitride layers deposited by the Radio-Frequency Magnetron Sputtering (RFMS) technique. The structural, optical, and elemental composition of monolayers was investigated, qualifying each individual material for use in the multilayer structure. The time stability of films deposited on microscope glass substrates was also investigated, as an important criterion for the selection of monolayers. The obtained results revealed that the SiNx/Cu/SiNx with the Cu layer deposited by using a negative substrate bias of -100 V showed the most stable behavior over time. Optical modeling was performed to design a THR multilayer structure, which was successfully obtained experimentally. A maximum optical transparency as high as 75% in the visible range and a reflectivity of ~ 85% in near infrared spectral interval was confirmed for the experimentally obtained multilayer structures.

3.
Nanomaterials (Basel) ; 12(6)2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35335715

ABSTRACT

Multiple antibiotic resistance has now become a major obstacle to the treatment of infectious diseases. In this context, the application of nanotechnology in medicine is a promising alternative for the prevention of infections with multidrug-resistant germs. The use of silver as a powerful antibacterial agent has attracted much interest. TiO2 and SiO2 thin films enhanced with Ag particles have been developed with the aim of maintaining the transparency of the polymer films. Antibacterial activity was evaluated for a Gram-negative species-Escherichia coli-in concentrations of 105 and 104 CFU/mL in different conditions-activation by UV irradiation, single layer and double layer. Increased antibacterial efficacy of TiO2-deposited foil was found for the tests that had been exposed to UV activation. In the case of bilayer tests, the efficiency was higher compared to those in a single layer, as the contact surface between the films and the bacterial suspension increased. Films can be used as a potential method to limit bacterial growth on hospital surfaces, such as telephone screens and medical equipment, given their optimized characteristics and proven antibacterial efficacy.

SELECTION OF CITATIONS
SEARCH DETAIL
...