Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr C Struct Chem ; 72(Pt 11): 768-776, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27811410

ABSTRACT

Tris(pyrazolyl)hydroborate ligands have been utilized in the fields of inorganic and coordination chemistry due to the ease of introduction of steric and electronic substitutions at the pyrazole rings. The development and use of the tris(pyrazolyl)hydroborate ligand, called a `scorpionate', were pioneered by the late Professor Swiatoslaw Trofimenko. He developed a second generation for his ligand system by the introduction of 3-tert-butyl and 3-phenyl substituents and this new ligand system accounted for many remarkable developments in inorganic and coordination chemistry in stabilizing monomeric species while maintaining an open coordination site. Bismuth is remarkably harmless among the toxic heavy metal p-block elements and is now becoming popular as a replacement for highly toxic metal elements, such as lead. Two bismuth(III) complexes of the anionic sulfur-containing tripod tris(3-tert-butyl-2-sulfanylidene-1H-imidazol-1-yl)hydroborate ligand were prepared. By recrystallization from MeOH/CH2Cl2, orange crystals of dichlorido(methanol-κO)[tris(3-tert-butyl-2-sulfanylidene-1H-imidazol-1-yl-κS)hydroborato]bismuth(III), [Bi(C21H34BN6S3)Cl2(CH4O)], (I), were obtained, manifesting a mononuclear structure. By using a noncoordinating solvent, red crystals of the binuclear structure with bridging Cl atoms were obtained, namely di-µ-chlorido-bis{chlorido[tris(3-tert-butyl-2-sulfanylidene-1H-imidazol-1-yl-κS)hydroborato]bismuth(III)}, [Bi2(C21H34BN6S3)2Cl4], (II). These complexes show {BiIIIS3Cl2O} and {BiIIIS3Cl3} coordination geometries with average BiIII-S bond lengths of 2.73 and 2.78 Šin (I) and (II), respectively. The overall BiIII coordination geometry is distorted octahedral due to stereochemically active lone pairs. The three BiIII-S bond lengths are almost equal in (I) but show considerable differences in (II), with one long and two shorter distances that also correlate with changes in the UV-Vis and 1H NMR spectra. For direct measurements of the Bi-S/Cl coordination, ligand K-edge X-ray absorption measurements were carried out in combination with ground and excited-state electronic structure analyses. For p-block elements, these sulfur-containing ligands are useful for preparing the appropriate complexes due to their flexible coordination geometry.

2.
J Biol Inorg Chem ; 21(5-6): 757-75, 2016 09.
Article in English | MEDLINE | ID: mdl-27350153

ABSTRACT

The linear nickel-nitrosyl complex [Ni(NO)(L3)] supported by a highly hindered tridentate nitrogen-based ligand, hydrotris(3-tertiary butyl-5-isopropyl-1-pyrazolyl)borate (denoted as L3), was prepared by the reaction of the potassium salt of the ligand with the nickel-nitrosyl precursor [Ni(NO)(Br)(PPh 3 ) 2 ]. The obtained nitrosyl complexes as well as the corresponding chlorido complexes [Ni(NO)(Cl)(PPh 3 ) 2 ] and [Ni(Cl)(L3)] were characterized by X-ray crystallography and different spectroscopic methods including IR/far-IR, UV-Vis, NMR, and multi-edge X-ray absorption spectroscopy at the Ni K-, Ni L-, Cl K-, and P K-edges. For comparative electronic structure analysis we also performed DFT calculations to further elucidate the electronic structure of [Ni(NO)(L3)]. These results provide the nickel oxidation state and the character of the Ni-NO bond. The complex [Ni(NO)(L3)] is best described as [Ni (II) (NO (-) )(L3)], and the spectroscopic results indicate that the phosphane complexes have a similar [Ni (II) (NO (-) )(X)(PPh 3 ) 2 ] ground state.


Subject(s)
Nickel/chemistry , Nitrogen Oxides/chemistry , Organometallic Compounds/chemistry , Crystallography, X-Ray , Electrons , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Organometallic Compounds/chemical synthesis , Quantum Theory , Spectrophotometry, Infrared , Spectrophotometry, Ultraviolet , X-Ray Absorption Spectroscopy
3.
Steroids ; 78(7): 693-9, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23499827

ABSTRACT

3,17-Dicarboxamido-androst-3,5,16-triene derivatives possessing various amine moieties were synthesized under mild conditions using palladium-catalyzed homogeneous aminocarbonylation as key reaction. Compounds containing the corresponding iodoalkene functionalities, i.e., 17-iodo-16-ene and 3-iodo-3,5-diene structural motifs, were used in the aminocarbonylation and the N-nucleophiles were varied systematically. Three amines, such as tert-butylamine, piperidine and methyl alaninate were used as N-nucleophiles in the aminocarbonylation. All variations of 3,17-dicarboxamides were synthesized using this methodology. Androst-4-ene-3,17-dione was used as starting material. The synthetic strategy of the multistep synthesis was based on the systematic variation and consecutive use of three different reactions: (i) the protection/deprotection of one of the keto functionalities (3-one or 17-one) as ethylene ketals, (ii) the transformation of the other keto group to iodoalkene functionality via its hydrazone, and (iii) palladium-catalyzed aminocarbonylation of the iodoalkene functionality.


Subject(s)
5-alpha Reductase Inhibitors/chemistry , Androstanes/chemistry , Palladium/chemistry , 5-alpha Reductase Inhibitors/chemical synthesis , Catalysis , Molecular Structure
4.
Steroids ; 76(3): 280-90, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21130794

ABSTRACT

3,17-Dicarboxamido-androst-3,5,16-triene, 3-carboxamido-androst-3,5-dien-17-one, 17-carboxamido-androst-4,16-dien-3-one and 11-carboxamido-androst-5,9(11)-dien-3,17-dione derivatives were synthesized in homogeneous carbonylation reactions from the corresponding 3,17-diiodo-androst-3,5,16-triene, 3-iodo-androst-3,5-diene-17-ethylene ketal, 17-iodo-androst-5,16-dien-3-ethylene ketal, 11-iodo-androst-5,9(11)-diene-3,17-bis(ethylene ketal) derivatives, respectively. A highly chemoselective palladium-catalyzed aminocarbonylation of the corresponding iodo-alkene, carried out under mild reaction conditions, can be considered as the key-step for the introduction of the carboxamide functionalities. The synthesis of the iodo-alkene substrate is based on the transformation of the corresponding keto derivative to hydrazone, which was treated with iodine in the presence of a base (1,1,3,3-tetramethyl guanidine). The aminocarbonylation reaction is highly tolerant towards the N-nucleophiles, i.e. various primary and secondary amines including amino acid methyl esters can also be used.


Subject(s)
Amides/chemistry , Androstanes/chemical synthesis , Palladium/chemistry , Androstanes/chemistry , Catalysis , Guanidines/chemistry , Iodides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...