Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 5(3): e9730, 2010 Mar 18.
Article in English | MEDLINE | ID: mdl-20305780

ABSTRACT

BACKGROUND: Fibrocytes are bone-marrow derived cells, expressing both haematopoietic and stromal cell markers, which contribute to tissue repair as well as pathological fibrosis. The differentiation of fibrocytes remains poorly characterised and this has limited understanding of their biology and function. In particular two methods are used to generate fibrocytes in vitro that differ fundamentally by the presence or absence of serum. METHODOLOGY/PRINCIPAL FINDINGS: We show here that fibrocytes grown in the absence of serum (SF) differentiate more efficiently from peripheral blood mononuclear cells than CD14(+) monocytes, and respond to serum by losing their spindle-shaped fibrocyte morphology. Although fibrocytes generated in the presence of serum (SC) express the same range of markers, they differentiate more efficiently from CD14(+) monocytes and do not change their morphology in response to serum. Transcriptional analysis revealed that both types of fibrocyte are distinct from each other, fibroblasts and additional monocyte-derived progeny. The gene pathways that differ significantly between SF and SC fibrocytes include those involved in cell migration, immune responses and response to wounding. CONCLUSIONS/SIGNIFICANCE: These data show that SF and SC fibrocytes are distinct but related cell types, and suggest that they will play different roles during tissue repair and fibrosis where changes in serum proteins may occur.


Subject(s)
Bone Marrow Cells/cytology , Fibrosis/pathology , Leukocytes, Mononuclear/cytology , Stromal Cells/cytology , Cell Differentiation , Cell Movement , Culture Media, Serum-Free/metabolism , Dendritic Cells/cytology , Fibrosis/blood , Humans , Lipopolysaccharide Receptors/biosynthesis , Macrophages/cytology , Microscopy, Confocal/methods , Monocytes/cytology , Osteoclasts/cytology , Wound Healing
2.
J Immunol ; 184(8): 4317-26, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20231690

ABSTRACT

Although human naturally occurring regulatory T cells (Tregs) may express either CD45RA or CD45RO, we find in agreement with previous reports that the ( approximately 80%) majority of natural Tregs in adults are CD45RO(+). The proportion of CD45RA(+) Tregs decreases, whereas CD45RO(+) Tregs increase significantly with age. Nevertheless, a small proportion of CD45RA(+) Tregs are found even in old (>80 y) adults and a proportion of these express CD31, a marker for recent thymic emigrants. We found that CD45RO(+) Tregs were highly proliferative compared with their CD45RA(+) counterparts. This was due in part to the conversion of CD45RA Tregs to CD45RO expression after activation. Another difference between these two Treg populations was their preferential migration to different tissues in vivo. Whereas CD45RA(+) Tregs were preferentially located in the bone marrow, associated with increased CXCR4 expression, CD45RO(+) Tregs were preferentially located in the skin, and this was associated with their increased expression of CLA and CCR4. Our studies therefore show that proliferation features strongly in maintenance of the adult Treg pool in humans and that the thymus may make a minor contribution to the maintenance of the peripheral pool of these cells, even in older adults. Furthermore, the different tissue compartmentalization of these cells suggests that different Treg niches exist in vivo, which may have important roles for their maturation and function.


Subject(s)
Cell Movement/immunology , Cell Proliferation , Leukocyte Common Antigens/biosynthesis , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Adult , Aged , Aged, 80 and over , Cell Differentiation/immunology , Cells, Cultured , Forkhead Transcription Factors/biosynthesis , Humans , Immunophenotyping , Isoenzymes/biosynthesis , Isoenzymes/genetics , Leukocyte Common Antigens/genetics , Middle Aged , Organ Specificity/immunology , T-Lymphocytes, Regulatory/cytology , Thymus Gland/cytology , Thymus Gland/enzymology , Thymus Gland/immunology , Young Adult
3.
J Cell Physiol ; 216(3): 732-41, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18393276

ABSTRACT

Exposure of endothelial cells (EC) to shear stress reduces their response to tumour necrosis factor-alpha (TNF). We tested how shear-conditioned EC responded to reduction in flow, either by spontaneously binding leukocytes, or by increasing sensitivity to TNF. Human umbilical vein EC were exposed to shear stress of 2.0 Pa (20 dyn/cm(2)) for 24 h. Shear was then reduced to stasis (30 sec perfusion each hour to exchange medium) or 0.003 Pa (creeping flow). At chosen times, neutrophils were perfused over the EC at 0.1 Pa (effective reperfusion). EC developed an ability to capture flowing neutrophils that lasted from 1 to 3 h after flow reduction, which was reduced by antibody against P-selectin or pre-treatment of EC with an inhibitor of NADPH-oxidase. Adhesion of neutrophils to TNF-treated EC was greatly suppressed by shear-conditioning, remained suppressed immediately after cessation of flow and then took 48 h to approach the level in static cultures. Interestingly, the response to TNF remained suppressed in cultures switched to creeping flow. Gene array analysis confirmed that differently recovered cells had separate phenotypes. Thus, an acute response of EC to reduction in shear may contribute to leukocyte recruitment, along with hypoxia, in ischaemia and reperfusion. Prolonged cessation of flow may increase the sensitivity of EC to inflammatory stimuli, but this effect may be suppressed by residual flow.


Subject(s)
Endothelial Cells/immunology , Endothelium, Vascular/cytology , Inflammation/metabolism , Stress, Mechanical , Animals , Cells, Cultured , Endothelial Cells/cytology , Endothelial Cells/physiology , Gene Expression Profiling , Humans , Neutrophils/cytology , Neutrophils/metabolism , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase/metabolism , Onium Compounds/metabolism , Phenotype , Shear Strength , Tumor Necrosis Factor-alpha/immunology , Umbilical Veins/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...