Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Molecules ; 26(15)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34361646

ABSTRACT

Fused deposition modelling-based 3D printing of pharmaceutical products is facing challenges like brittleness and printability of the drug-loaded hot-melt extruded filament feedstock and stabilization of the solid-state form of the drug in the final product. The aim of this study was to investigate the influence of the drug load on printability and physical stability. The poor glass former naproxen (NAP) was hot-melt extruded with Kollidon® VA 64 at 10-30% w/w drug load. The extrudates (filaments) were characterised using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and thermogravimetric analysis (TGA). It was confirmed that an amorphous solid dispersion was formed. A temperature profile was developed based on the results from TGA, DSC, and DMA and temperatures used for 3D printing were selected from the profile. The 3D-printed tablets were characterised using DSC, X-ray computer microtomography (XµCT), and X-ray powder diffraction (XRPD). From the DSC and XRPD analysis, it was found that the drug in the 3D-printed tablets (20 and 30% NAP) was amorphous and remained amorphous after 23 weeks of storage (room temperature (RT), 37% relative humidity (RH)). This shows that adjusting the drug ratio can modulate the brittleness and improve printability without compromising the physical stability of the amorphous solid dispersion.


Subject(s)
Drug Liberation , Naproxen/chemistry , Printing, Three-Dimensional , Tablets/chemistry , Technology, Pharmaceutical/methods , Excipients/chemistry , Solubility , Temperature
2.
Adv Drug Deliv Rev ; 177: 113923, 2021 10.
Article in English | MEDLINE | ID: mdl-34390775

ABSTRACT

Materials and manufacturing processes share a common purpose of enabling the pharmaceutical product to perform as intended. This review on the role of polymeric materials in additive manufacturing of oral dosage forms, focuses on the interface between the polymer and key stages of the additive manufacturing process, which determine printability. By systematically clarifying and comparing polymer functional roles and properties for a variety of AM technologies, together with current and emerging techniques to characterize these properties, suggestions are provided to stimulate the use of readily available and sometimes underutilized pharmaceutical polymers in additive manufacturing. We point to emerging characterization techniques and digital tools, which can be harnessed to manage existing trade-offs between the role of polymers in printer compatibility versus product performance. In a rapidly evolving technological space, this serves to trigger the continued development of 3D printers to suit a broader variety of polymers for widespread applications of pharmaceutical additive manufacturing.


Subject(s)
Excipients/chemistry , Polymers/chemistry , Technology, Pharmaceutical , Printing, Three-Dimensional
3.
Eur J Pharm Biopharm ; 155: 22-28, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32768607

ABSTRACT

The aim of this study was to investigate the amorphization, physical stability and drug release of a model drug, carvedilol (CAR), when loaded onto functionalised calcium carbonate (FCC) using mechanochemical activation (vibrational ball milling). The solid-state characteristics and physical stability of CAR-FCC samples, prepared at different weight ratios and for different milling times, were determined using differential scanning calorimetry and X-ray powder diffraction. Upon milling CAR-FCC samples containing 50% CAR, amorphization of CAR was observed after 10 min. For CAR-FCC samples milled for either 30 or 90 min, it was found that CAR was amorphised at all ratios (10-90% CAR), but FCC remained crystalline. The glass transition temperature (Tgα) of the various CAR-FCC samples milled for 90 min was found to be similar (38 °C) for all ratios containing 20% CAR and above. The similar Tgαs for the different drug ratios indicate deposition of amorphous CAR onto the surface of FCC. For CAR-FCC samples containing 10% CAR, a Tgα of 49 °C was found, which is 11 °C higher compared with other CAR-FCC samples. This may indicate restricted molecular mobility resulting from CAR molecules that are in close contact with the FCC surface. The physical stability, under both stress (100 °C) and non-stress conditions (25 °C at dry conditions), showed that drug concentrations up to 30% CAR can be stabilized in the amorphous form for at least 19 weeks under non-stress conditions when deposited onto FCC, compared to less than a week physical stability of neat amorphous CAR. In vitro drug release showed that CAR-FCC samples containing 60% CAR and below can improve the drug release and generate supersaturated systems compared to neat amorphous and crystalline CAR. Samples with lower drug concentrations (40% CAR and below) can maintain supersaturation during 360 min of dissolution testing. This study indicates that the crystalline inorganic material, FCC, can facilitate amorphization of drugs, provide stabilization against drug crystallization, and improve dissolution properties of amorphous drugs upon mechanochemical activation.


Subject(s)
Calcium Phosphates/chemical synthesis , Calcium Phosphates/pharmacokinetics , Chemistry, Pharmaceutical/methods , Biomechanical Phenomena/drug effects , Biomechanical Phenomena/physiology , Calcium Carbonate/chemical synthesis , Calcium Carbonate/pharmacokinetics , Drug Stability , Solubility , X-Ray Diffraction/methods
4.
Nat Commun ; 11(1): 1235, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32144254

ABSTRACT

Thermal methods are indispensable for the characterization of most materials. However, the existing methods require bulk amounts for analysis and give an averaged response of a material. This can be especially challenging in a biomedical setting, where only very limited amounts of material are initially available. Nano- and microelectromechanical systems (NEMS/MEMS) offer the possibility of conducting thermal analysis on small amounts of materials in the nano-microgram range, but cleanroom fabricated resonators are required. Here, we report the use of single drug and collagen particles as micro mechanical resonators, thereby eliminating the need for cleanroom fabrication. Furthermore, the proposed method reveals additional thermal transitions that are undetected by standard thermal methods and provide the possibility of understanding fundamental changes in the mechanical properties of the materials during thermal cycling. This method is applicable to a variety of different materials and opens the door to fundamental mechanistic insights.


Subject(s)
Chemistry Techniques, Analytical/instrumentation , Materials Testing/instrumentation , Micro-Electrical-Mechanical Systems , Collagen/chemistry , Crystallization , Equipment Design , Phase Transition , Theophylline/chemistry
5.
Pharmaceutics ; 11(12)2019 Nov 24.
Article in English | MEDLINE | ID: mdl-31771255

ABSTRACT

Co-amorphous drug-drug systems have been developed with the overall aim of improving the physical stability of two or more amorphous drugs. Co-amorphous systems often show good physical stability, and higher solubility and dissolution rates compared to their crystalline counterparts. The aim of this study is to determine if eutectic mixtures of two drugs can form stable co-amorphous systems. Three drug-drug mixtures, indomethacin-naproxen (IND-NAP), nifedipine-paracetamol (NIF-PAR), and paracetamol-celecoxib (PAR-CCX), were investigated for their eutectic and co-amorphization behavior as well as their physical stability in the co-amorphous form. The phase diagrams of the crystalline mixtures and the thermal behavior of the co-amorphous systems were analyzed by differential scanning calorimetry. The solid-state form and physical stability of the co-amorphous systems were analyzed using X-ray powder diffractometry during storage at room temperature at dry conditions. Initial eutectic screening using nifedipine (NIF), paracetamol (PAR), and celecoxib (CCX) indicated that IND-NAP, NIF-PAR, and PAR-CCX can form eutectic mixtures. Phase diagrams were then constructed using theoretical and experimental values. These systems, at different drug-to-drug ratios, were melted and cooled to form binary mixtures. Most mixtures were found to be co-amorphous systems, as they were amorphous and exhibited a single glass transition temperature. The stability study of the co-amorphous systems indicated differences in their physical stability. Comparing the phase diagrams with the physical stability of the co-amorphous mixtures, it was evident that the respective drug-drug ratio that forms the eutectic point also forms the most stable co-amorphous system. The eutectic behavior of drug-drug systems can thus be used to predict drug ratios that form the most stable co-amorphous systems.

6.
Phys Chem Chem Phys ; 21(35): 19686-19694, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31469369

ABSTRACT

In this study the glass transition temperatures (Tgα and Tgß) in mesoporous silica-based amorphous drugs were characterized. For this purpose, mesoporous silica Parteck SLC (MPS) was loaded with the drugs ibuprofen and carvedilol, either below, at, or above the monomolecular drug loading capacities, i.e. the concentration at which the entire MPS surface is covered with a monolayer of drug molecules. The resulting amorphous forms were analysed using X-ray powder diffraction and the thermal behaviour was characterised with differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The drug monolayer did not contribute to the thermal signal in DSC. Using DMA however, it could be shown that the monolayer indeed exhibited a very weak Tgα, and that the temperature range of this transition did not differ from that of the quench cooled amorphous drugs. Theoretical ab initio molecular dynamics simulations revealed that the nature of hydrogen bonding geometry of the functional groups interacting with the MPS surface were similar to that of the respective crystalline drugs, which results in restricted molecular motions for those functional groups. On the other hand, the non-interacting parts of the molecules exhibited molecular motions similar to what is observed in pure amorphous drugs. As a result of the interactions of the monolayer with the MPS surface, the monomolecular drug layer did not reveal a Tgß. However, a Tgß was found at any drug-MPS ratios above the monomolecular drug loading capacity as a result of the excess drug which forms a "true" amorphous phase. Overall, this study demonstrated that drug molecules forming an amorphous monolayer on the surfaces of a mesoporous silica particle, even though they are restricted in their mobility, exhibit a Tgα, but lack a Tgß, whereas any excess drug confined in the MPS pores showed similar properties as the pure amorphous drug. These findings will help to increase the overall understanding of drug loaded MS systems, including their physical stability as well as release properties.


Subject(s)
Glass/chemistry , Silicon Dioxide/chemistry , Transition Temperature , Calorimetry, Differential Scanning , Carvedilol/chemistry , Drug Liberation , Drug Stability , Ibuprofen/chemistry , Molecular Dynamics Simulation
7.
AAPS PharmSciTech ; 20(3): 137, 2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30847607

ABSTRACT

Corticosteroid resistance poses a major challenge to effective treatment of chronic obstructive pulmonary diseases. However, corticosteroid resistance can be overcome by co-administration of theophylline. The aim of this study was to formulate the corticosteroid budesonide with theophylline into inhalable dry powders intended for pulmonary combination therapy. Four types of spray-dried powders were prepared: (i) budesonide and theophylline co-dissolved and processed using a 2-fluid nozzle spray drier, (ii) budesonide nanocrystals and dissolved theophylline co-dispersed and processed using a 2-fluid nozzle spray drier, (iii) dissolved budesonide and dissolved theophylline processed using a 3-fluid nozzle spray drier, and (iv) budesonide nanocrystals and dissolved theophylline processed using a 3-fluid nozzle spray drier. Spray drying from the solutions resulted in co-amorphous (i) and partially amorphous powders (iii), whereas spray drying of the nanosuspensions resulted in crystalline products (ii and iv). Even though budesonide was amorphous in (i) and (iii), it failed to exhibit any dissolution advantage over the unprocessed budesonide. In contrast, the dissolution of budesonide from its nanocrystalline formulations, i.e., (ii) and (iv), was significantly higher compared to a physical mixture or unprocessed budesonide. Furthermore, the spray-dried powders obtained from the 2-fluid nozzle spray drier, i.e., (i) and (ii), exhibited co-deposition of budesonide and theophylline at the same weight ratio in the aerodynamic assessment using the New Generation Impactor. In contrast, the depositions of budesonide and theophylline deviated from the starting weight ratio in the aerodynamic assessment of spray-dried powders obtained from the 3-fluid nozzle spray drier, i.e., (iii) and (iv). Based on these results, the powders spray-dried from the suspension by using the 2-fluid nozzle spray drier, i.e., (ii), offered the best formulation properties given the physically stable crystalline solid-state properties and the co-deposition profile.


Subject(s)
Bronchodilator Agents/administration & dosage , Bronchodilator Agents/chemistry , Budesonide/administration & dosage , Budesonide/chemistry , Powders , Theophylline/administration & dosage , Theophylline/chemistry , Administration, Inhalation , Dosage Forms , Drug Combinations , Drug Therapy, Combination , Dry Powder Inhalers , Humans , Lung , Particle Size , Suspensions
8.
Mol Pharm ; 15(9): 4247-4256, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30020794

ABSTRACT

The improved physical stability associated with coamorphous drug-amino acid (AA) formulations may indicate a decrease in mobility of the amorphous drug molecules, compared to the neat amorphous form of the drug. Since the characteristic glass transition temperatures ( Tgα and Tgß) represent molecular mobility in amorphous systems, we aimed to characterize Tgα and Tgß and to determine their role in physical stability as well as their potential usefulness to determine the presence of an excess component (either drug or AA) in coamorphous systems. Indomethacin (IND)-tryptophan (TRP) and carvedilol (CAR)-TRP were used as model coamorphous systems. The analytical techniques used were X-ray powder diffractometry (XRPD) to determine the solid-state form, dynamic mechanical analysis (DMA) to probe Tgα and Tgß, and differential scanning calorimetry (DSC) to probe thermal behavior of the coamorphous systems. Tgα analysis showed a gradual monotonous increase in Tgα values with increasing AA concentration, and this increase in the Tgα value is not the cause of the improved physical stability. The Tgß analysis for the IND-TRP sample with 10% drug had a Tgß of 226.8 K, and samples with 20-90% drug had similar Tgß values around 212.5 K. For CAR-TRP, samples with 10-40% drug had similar Tgß values around 230.5 K, and samples with 50-90% drug had similar Tgß values around 223.3 K. The similar Tgß values in coamorphous systems at different drug ratios indicate that they in fact are the Tgß of the component that is in excess to an ideal drug-AA coamorphous mixture. DSC and XRPD analysis showed that for IND-TRP, IND is in excess if the drug concentration is 30% or above and will eventually recrystallize. For CAR-TRP, CAR is in excess and recrystallizes when the drug concentration is 50% or above. We have proposed a means of estimating, on the basis of Tgß, which drug to AA ratios will lead to optimally physically stable coamorphous systems that can be considered for further development.


Subject(s)
Amino Acids/chemistry , Glass/chemistry , Transition Temperature , Calorimetry, Differential Scanning , Carvedilol/chemistry , Indomethacin/chemistry , Tryptophan/chemistry
9.
Opt Express ; 26(11): 14024-14037, 2018 May 28.
Article in English | MEDLINE | ID: mdl-29877446

ABSTRACT

Femtosecond laser exposure of fused silica can lead to non-linear absorption, eventually causing structural modifications in the material. Above a given pulse repetition frequency, the effects from one pulse to the next one become cumulative leading to a localized bulk heating of the substrate, and in turn, to the dissociation of the glass matrix leading to gas bubbles formation. Here, we investigate the dynamics of bubbles formation as a function of the incoming net fluence. In particular, we observe evidences of laser trapping of gas bubbles and the unexpected formation of self-organized nanostructures, resembling nanogratings normally found at much lower repetition rate, i.e. when cumulative effects are absent.

10.
J Phys Chem B ; 122(10): 2803-2808, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29498523

ABSTRACT

Recrystallization of amorphous drugs is currently limiting the simple approach to improve solubility and bioavailability of poorly water-soluble drugs by amorphization of a crystalline form of the drug. In view of this, molecular mobility, α-relaxation and ß-relaxation processes with the associated transition temperatures Tgα and Tgß, was investigated using dynamic mechanical analysis (DMA). The correlation between the transition temperatures and the onset of recrystallization for nine amorphous drugs, stored under dry conditions at a temperature of 296 K, was determined. From the results obtained, Tgα does not correlate with the onset of recrystallization under the experimental storage conditions. However, a clear correlation between Tgß and the onset of recrystallization was observed. It is shown that at storage temperature below Tgß, amorphous nifedipine retains its amorphous form. On the basis of the correlation, an empirical correlation is proposed for predicting the onset of recrystallization for drugs stored at 0% RH and 296 K.


Subject(s)
Glass/chemistry , Pharmaceutical Preparations/chemistry , Transition Temperature , Crystallization , Mechanical Phenomena , Solubility
11.
Phys Chem Chem Phys ; 19(44): 30039-30047, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29094742

ABSTRACT

The fundamental origins surrounding the dynamics of disordered solids near their characteristic glass transitions continue to be fiercely debated, even though a vast number of materials can form amorphous solids, including small-molecule organic, inorganic, covalent, metallic, and even large biological systems. The glass-transition temperature, Tg, can be readily detected by a diverse set of techniques, but given that these measurement modalities probe vastly different processes, there has been significant debate regarding the question of why Tg can be detected across all of them. Here we show clear experimental and computational evidence in support of a theory that proposes that the shape and structure of the potential-energy surface (PES) is the fundamental factor underlying the glass-transition processes, regardless of the frequency that experimental methods probe. Whilst this has been proposed previously, we demonstrate, using ab initio molecular-dynamics (AIMD) simulations, that it is of critical importance to carefully consider the complete PES - both the intra-molecular and inter-molecular features - in order to fully understand the entire range of atomic-dynamical processes in disordered solids. Finally, we show that it is possible to utilise this dependence to directly manipulate and harness amorphous dynamics in order to control the behaviour of such solids by using high-powered terahertz pulses to induce crystallisation and preferential crystal-polymorph growth in glasses. Combined, these findings provide compelling evidence that the PES landscape, and the corresponding energy barriers, are the ultimate controlling feature behind the atomic and molecular dynamics of disordered solids, regardless of the frequency at which they occur.

SELECTION OF CITATIONS
SEARCH DETAIL
...