Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 95(23): e0061021, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34523972

ABSTRACT

Plasmablasts represent a specialized class of antibody-secreting effector B cells that transiently appear in blood circulation following infection or vaccination. The expansion of these cells generally tends to be massive in patients with systemic infections such as dengue or Ebola that cause hemorrhagic fever. To gain a detailed understanding of human plasmablast responses beyond antibody expression, here, we performed immunophenotyping and RNA sequencing (RNA-seq) analysis of the plasmablasts from dengue febrile children in India. We found that plasmablasts expressed several adhesion molecules and chemokines or chemokine receptors that are involved in endothelial interactions or homing to inflamed tissues, including skin, mucosa, and intestine, and upregulated the expression of several cytokine genes that are involved in leukocyte extravasation and angiogenesis. These plasmablasts also upregulated the expression of receptors for several B-cell prosurvival cytokines that are known to be induced robustly in systemic viral infections such as dengue, some of which generally tend to be relatively higher in patients manifesting hemorrhage and/or shock than in patients with mild febrile infection. These findings improve our understanding of human plasmablast responses during the acute febrile phase of systemic dengue infection. IMPORTANCE Dengue is globally spreading, with over 100 million clinical cases annually, with symptoms ranging from mild self-limiting febrile illness to more severe and sometimes life-threatening dengue hemorrhagic fever or shock, especially among children. The pathophysiology of dengue is complex and remains poorly understood despite many advances indicating a key role for antibody-dependent enhancement of infection. While serum antibodies have been extensively studied, the characteristics of the early cellular factories responsible for antibody production, i.e., plasmablasts, are only beginning to emerge. This study provides a comprehensive understanding of the transcriptional profiles of human plasmablasts from dengue patients.


Subject(s)
Dengue/immunology , Immunophenotyping/methods , Plasma Cells/immunology , Antibodies, Viral/immunology , Antibody-Dependent Enhancement , B-Lymphocyte Subsets/immunology , B-Lymphocytes/immunology , Cytokines/genetics , Dengue Virus/immunology , Humans , India , Plasma Cells/metabolism
2.
J Virol ; 90(24): 11259-11278, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27707928

ABSTRACT

Epidemiological studies suggest that India has the largest number of dengue virus infection cases worldwide. However, there is minimal information about the immunological responses in these patients. CD8 T cells are important in dengue, because they have been implicated in both protection and immunopathology. Here, we provide a detailed analysis of HLA-DR+ CD38+ and HLA-DR- CD38+ effector CD8 T cell subsets in dengue patients from India and Thailand. Both CD8 T cell subsets expanded and expressed markers indicative of antigen-driven proliferation, tissue homing, and cytotoxic effector functions, with the HLA-DR+ CD38+ subset being the most striking in these effector qualities. The breadth of the dengue-specific CD8 T cell response was diverse, with NS3-specific cells being the most dominant. Interestingly, only a small fraction of these activated effector CD8 T cells produced gamma interferon (IFN-γ) when stimulated with dengue virus peptide pools. Transcriptomics revealed downregulation of key molecules involved in T cell receptor (TCR) signaling. Consistent with this, the majority of these CD8 T cells remained IFN-γ unresponsive even after TCR-dependent polyclonal stimulation (anti-CD3 plus anti-CD28) but produced IFN-γ by TCR-independent polyclonal stimulation (phorbol 12-myristate 13-acetate [PMA] plus ionomycin). Thus, the vast majority of these proliferating, highly differentiated effector CD8 T cells probably acquire TCR refractoriness at the time the patient is experiencing febrile illness that leads to IFN-γ unresponsiveness. Our studies open novel avenues for understanding the mechanisms that fine-tune the balance between CD8 T cell-mediated protective versus pathological effects in dengue. IMPORTANCE: Dengue is becoming a global public health concern. Although CD8 T cells have been implicated both in protection and in the cytokine-mediated immunopathology of dengue, how the balance is maintained between these opposing functions remains unknown. We comprehensively characterized CD8 T cell subsets in dengue patients from India and Thailand and show that these cells expand massively and express phenotypes indicative of overwhelming antigenic stimulus and tissue homing/cytotoxic-effector functions but that a vast majority of them fail to produce IFN-γ in vitro Interestingly, the cells were fully capable of producing the cytokine when stimulated in a T cell receptor (TCR)-independent manner but failed to do so in TCR-dependent stimulation. These results, together with transcriptomics, revealed that the vast majority of these CD8 T cells from dengue patients become cytokine unresponsive due to TCR signaling insufficiencies. These observations open novel avenues for understanding the mechanisms that fine-tune the balance between CD8-mediated protective versus pathological effects.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cytotoxicity, Immunologic , Dengue Virus/drug effects , T-Lymphocyte Subsets/immunology , Transcriptome/immunology , ADP-ribosyl Cyclase 1/genetics , ADP-ribosyl Cyclase 1/immunology , Adolescent , Antibodies/pharmacology , CD28 Antigens/antagonists & inhibitors , CD28 Antigens/genetics , CD28 Antigens/immunology , CD3 Complex/genetics , CD3 Complex/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/virology , Cell Proliferation/drug effects , Child , Child, Preschool , Dengue Virus/genetics , Dengue Virus/growth & development , Dengue Virus/metabolism , Female , Gene Expression Regulation , HLA-DR Antigens/genetics , HLA-DR Antigens/immunology , Humans , Immunity, Cellular , India , Infant , Interferon-gamma/genetics , Interferon-gamma/immunology , Ionomycin/pharmacology , Male , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Primary Cell Culture , RNA Helicases/genetics , RNA Helicases/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Serine Endopeptidases/genetics , Serine Endopeptidases/immunology , Signal Transduction , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/virology , Tetradecanoylphorbol Acetate/pharmacology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/immunology
3.
Cancer Immunol Immunother ; 62(12): 1831-40, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24149465

ABSTRACT

Identification of novel vaccine targets is critical for the design and advancement of prostate cancer (PCa) immunotherapy. Ideal targets are proteins that are abundant in prostate tumors while absent in extra-prostatic tissues. The fusion of the androgen-regulated TMPRSS2 gene with the ETS transcription factor ERG occurs in approximately 50 % of prostate cancer cases and results in aberrant ERG expression. Because expression of ERG is very low in peripheral tissue, we evaluated the suitability of this protein as an antigen target in PCa vaccines. ERG-derived HLA-A*0201-restricted immunogenic epitopes were identified through a 3-step strategy that included in silico, in vitro, and in vivo validation. Algorithms were used to predict potential HLA-A*0201-binding epitopes. High-scoring epitopes were tested for binding to HLA-A*0201 using the T2-based stabilization assay in vitro. Five peptides were found to bind HLA-A*0201 and were subsequently tested for immunogenicity in humanized, HLA-A*0201 transgenic mice. The in vivo screening identified three immunogenic peptides. One of these peptides, ERG295, overcame peripheral tolerance in HLA-A*0201 mice that expressed prostate-restricted ERG. Also, this peptide induced an antigen-specific response against ERG-expressing human prostate tumor cells. Finally, tetramer assay showed detectable and responsive ERG295-specific cytotoxic lymphocytes in peripheral blood of HLA-A*0201(+) prostate cancer patients. Detection of ERG-specific CTLs in both mice and the blood of prostate cancer patients indicates that ERG-specific tolerance can be overcome. Additionally, these data suggest that ERG is a suitable target antigen for PCa immunotherapy.


Subject(s)
Cancer Vaccines/therapeutic use , HLA-A2 Antigen/immunology , Molecular Targeted Therapy , Oncogene Proteins, Fusion/antagonists & inhibitors , Peptide Fragments/immunology , Prostatic Neoplasms/therapy , T-Lymphocytes, Cytotoxic/immunology , Animals , Case-Control Studies , Epitopes, T-Lymphocyte/immunology , Flow Cytometry , Humans , Immunotherapy , Male , Mice , Mice, Knockout , Mice, Transgenic , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/immunology , Prostatic Neoplasms/immunology , Prostatic Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...