Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Swiss J Geosci ; 116(1): 19, 2023.
Article in English | MEDLINE | ID: mdl-38076670

ABSTRACT

We investigated the mechanisms leading to the formation of tunnel valleys in the Swiss foreland near Bern. We proceeded through producing 3D maps of the bedrock topography based on drillhole information and a new gravimetric survey combined with modelling. In this context, the combination of information about the densities of the sedimentary fill and of the bedrock, together with published borehole data and the results of gravity surveys along 11 profiles across the valleys, served as input for the application of our 3D gravity modelling software referred to as PRISMA. This ultimately allowed us to model the gravity effect of the Quaternary fill of the overdeepenings and to produce cross-sectional geometries of these troughs. The results show that 2-3 km upstream of the city of Bern, the overdeepenings are approximately 3 km wide. They are characterized by steep to oversteepened lateral flanks and a wide flat base, which we consider as a U-shaped cross-sectional geometry. There, the maximum residual gravity anomaly ranges between - 3 to - 4 mGal for the Aare valley, which is the main overdeepening of the region. Modelling shows that this corresponds to a depression, which reaches a depth of c. 300 m a.s.l. Farther downstream approaching Bern, the erosional trough narrows by c. 1 km, and the base gets shallower by c. 100 m as revealed by drillings. This is supported by the results of our gravity surveys, which disclose a lower maximum gravity effect of c. - 0.8 to - 1.3 mGal. Interestingly, in the Bern city area, these shallow troughs with maximum gravity anomalies ranging from - 1.4 to - 1.8 mGal are underlain by one or multiple inner gorges, which are at least 100 m deep (based on drilling information) and only a few tens of meters wide (disclosed by gravity modelling). At the downstream end of the Bern area, we observe that the trough widens from 2 km at the northern border of Bern to c. 4 km approximately 2 km farther downstream, while the bottom still reaches c. 300 to 200 m a.s.l. Our gravity survey implies that this change is associated with an increase in the maximum residual anomaly, reaching values of - 2.5 mGal. Interestingly, the overdeepening's cross-sectional geometry in this area has steeply dipping flanks converging to a narrow base, which we consider as V-shaped. We attribute this shape to erosion by water either underneath or at the snout of a glacier, forming a gorge. This narrow bedrock depression was subsequently widened by glacial carving. In this context, strong glacial erosion upstream of the Bern area appears to have overprinted these traces. In contrast, beneath the city of Bern and farther downstream these V-shaped features have been preserved. Available chronological data suggest that the formation of this gorge occurred prior to MIS 8 and possibly during the aftermath of one of the largest glaciations when large fluxes of meltwater resulted in the fluvial carving into the bedrock. Supplementary Information: The online version contains supplementary material available at 10.1186/s00015-023-00447-y.

2.
Surv Geophys ; 39(5): 1009-1033, 2018.
Article in English | MEDLINE | ID: mdl-30956376

ABSTRACT

The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps-Apennines-Carpathians-Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth.

3.
Sci Rep ; 7(1): 413, 2017 03 24.
Article in English | MEDLINE | ID: mdl-28341833

ABSTRACT

The crustal-scale geometry of the European Alps has been explained by a classical subduction-scenario comprising thrust-and-fold-related compressional wedge tectonics and isostatic rebound. However, massive blocks of crystalline basement (External Crystalline Massifs) vertically disrupt the upper-crustal wedge. In the case of the Aar massif, top basement vertically rises for >12 km and peak metamorphic temperatures increase along an orogen-perpendicular direction from 250 °C-450 °C over horizontal distances of only <15 km (Innertkirchen-Grimselpass), suggesting exhumation of midcrustal rocks with increasing uplift component along steep vertical shear zones. Here we demonstrate that delamination of European lower crust during lithosphere mantle rollback migrates northward in time. Simultaneously, the Aar massif as giant upper crustal block extrudes by buoyancy forces, while substantial volumes of lower crust accumulate underneath. Buoyancy-driven deformation generates dense networks of steep reverse faults as major structures interconnected by secondary branches with normal fault component, dissecting the entire crust up to the surface. Owing to rollback fading, the component of vertical motion reduces and is replaced by a late stage of orogenic compression as manifest by north-directed thrusting. Buoyancy-driven vertical tectonics and modest late shortening, combined with surface erosion, result in typical topographic and metamorphic gradients, which might represent general indicators for final stages of continent-continent collisions.

4.
Nat Commun ; 6: 8605, 2015 Oct 16.
Article in English | MEDLINE | ID: mdl-26472498

ABSTRACT

The stratigraphies of foreland basins have been related to orogeny, where continent-continent collision causes the construction of topography and the downwarping of the foreland plate. These mechanisms have been inferred for the Molasse basin, stretching along the northern margin of the European Alps. Continuous flexural bending of the subducting European lithosphere as a consequence of topographic loads alone would imply that the Alpine topography would have increased at least between 30 Ma and ca. 5-10 Ma when the basin accumulated the erosional detritus. This, however, is neither consistent with observations nor with isostatic mass balancing models because paleoaltimetry estimates suggest that the topography has not increased since 20 Ma. Here we show that a rollback mechanism for the European plate is capable of explaining the construction of thick sedimentary successions in the Molasse foreland basin where the extra slab load has maintained the Alpine surface at low, but constant, elevations.

SELECTION OF CITATIONS
SEARCH DETAIL
...