Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Dairy Sci ; 103(6): 5346-5353, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32331881

ABSTRACT

Hoof lesions represent an important issue in modern dairy herds, with reported prevalence in different countries ranging from 40 to 70%. This high prevalence of hoof lesions has both economic and social consequences, resulting in increased labor expenses and decreasing animal production, longevity, reproduction, health, and welfare. Therefore, a key goal of dairy herds is to reduce the incidence of hoof lesions, which can be achieved both by improving management practices and through genetic selection. The Canadian dairy industry has recently released a hoof health sub-index. This national genetic evaluation program for hoof health was achieved by creating a centralized data collection system that routinely transfers data recorded by hoof trimmers into a coherent and sustainable national database. The 8 most prevalent lesions (digital dermatitis, interdigital dermatitis, interdigital hyperplasia, heel horn erosion, sole hemorrhage, sole ulcer, toe ulcer, and white line lesion) in Canada are analyzed with a multiple-trait model using a single-step genomic BLUP method. Estimated genomic breeding values for each lesion are combined into a sub-index according to their economic value and prevalence. In addition, data recorded within this system were used to create an interactive management report for dairy producers by Canadian DHI, including the prevalence of lesions on farm, their trends over time, and benchmarks with provincial and national averages.


Subject(s)
Cattle Diseases/genetics , Foot Diseases/veterinary , Hoof and Claw , Selection, Genetic , Animals , Breeding , Canada , Cattle , Cattle Diseases/epidemiology , Dairying , Farms , Female , Foot Diseases/diagnosis , Foot Diseases/genetics , Phenotype , Prevalence
2.
J Dairy Sci ; 99(3): 1990-1998, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26774726

ABSTRACT

Producer-recorded health data for metabolic disease traits and fertility disorders on 35,575 Canadian Holstein cows were jointly analyzed with selected indicator traits. Metabolic diseases included clinical ketosis (KET) and displaced abomasum (DA); fertility disorders were metritis (MET) and retained placenta (RP); and disease indicators were fat-to-protein ratio, milk ß-hydroxybutyrate, and body condition score (BCS) in the first lactation. Traits in first and later (up to fifth) lactations were treated as correlated in the multiple-trait (13 traits in total) animal linear model. Bayesian methods with Gibbs sampling were implemented for the analysis. Estimates of heritability for disease incidence were low, up to 0.06 for DA in first lactation. Among disease traits, the environmental herd-year variance constituted 4% of the total variance for KET and less for other traits. First- and later-lactation disease traits were genetically correlated (from 0.66 to 0.72) across all traits, indicating different genetic backgrounds for first and later lactations. Genetic correlations between KET and DA were relatively strong and positive (up to 0.79) in both first- and later-lactation cows. Genetic correlations between fertility disorders were slightly lower. Metritis was strongly genetically correlated with both metabolic disease traits in the first lactation only. All other genetic correlations between metabolic and fertility diseases were statistically nonsignificant. First-lactation KET and MET were strongly positively correlated with later-lactation performance for these traits due to the environmental herd-year effect. Indicator traits were moderately genetically correlated (from 0.30 to 0.63 in absolute values) with both metabolic disease traits in the first lactation. Smaller and mostly nonsignificant genetic correlations were among indicators and metabolic diseases in later lactations. The only significant genetic correlations between indicators and fertility disorders were those between BCS and MET in both first and later lactations. Results indicated a limited value of a joint genetic evaluation model for metabolic disease traits and fertility disorders in Canadian Holsteins.


Subject(s)
Cattle Diseases/genetics , Fertility/genetics , Lactation/genetics , 3-Hydroxybutyric Acid , Animals , Bayes Theorem , Canada , Cattle , Female , Genetic Predisposition to Disease , Ketosis/genetics , Ketosis/veterinary , Linear Models , Metabolic Diseases , Milk , Phenotype , Placenta, Retained/genetics , Placenta, Retained/veterinary , Pregnancy
3.
J Dairy Sci ; 94(1): 512-6, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21183064

ABSTRACT

The objectives of this study were to estimate genetic parameters of milking temperament (MT) and milking speed (MS) in Canadian Holsteins and to examine associations of bull proofs of MT and MS with other economically important traits. First-lactation data consisted of 1,940,092 and 2,620,175 cows for MT and MS, respectively. Milking temperament and MS were recorded on a scale from 1 to 5 from very nervous to very calm and from very slow to very fast, respectively. The linear animal model included the fixed effects of herd-year-season of calving, stage of lactation, age at first calving, and the random effects of animal and residual. Both single-trait and bivariate analyses were carried out to estimate genetic parameters of MT and MS. For genetic parameter estimation, 20,000 records from randomly selected herds were used. However, for breeding value estimation, all records were included. Heritability values were 0.128 and 0.139 for MT and MS, respectively. The genetic correlation between MT and MS was 0.247. Analysis of bull proof correlation of MT and MS with other traits indicated that these traits were lowly correlated with a wide range of traits such as production, reproduction, conformation, and auxiliary traits.


Subject(s)
Behavior, Animal , Cattle/genetics , Lactation/genetics , Animals , Canada , Cattle/psychology , Female , Lactation/psychology , Milk , Time Factors
4.
J Dairy Sci ; 93(9): 4359-65, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20723709

ABSTRACT

The aim of this study was to assess the effect of workability traits like milking speed and temperament on functional longevity of Canadian dairy cattle using a Weibull proportional hazards model. First-lactation data consisted of the following: 1,728,289 and 2,426,123 Holstein cows for milking temperament and milking speed, respectively, from 18,401 herds and sired by 8,248 sires; 39,618 and 60,121 Jersey cows for milking temperament and milking speed, respectively, from 1,845 herds and sired by 2,413 sires; and 54,391 and 94,847 Ayrshire cows for milking temperament and milking speed, respectively, from 1,316 herds and sired by 2,779 sires. Functional longevity was defined as the number of days from the first calving to culling, death, or censoring adjusted for production. Milking temperament and milking speed were recorded on a 1- to 5-point scale from very nervous to very calm and from very slow to very fast, respectively. The statistical model included the effects of stage of lactation; season of production; the annual change in herd size; type of milk recording supervision; age at first calving; effects of milk, fat, and protein yields calculated as within herd-year-parity deviations; herd-year-season of calving; sire; and milking temperament or milking speed class. The relative culling rate was calculated for animals in each milking temperament or milking speed class after accounting for the above-mentioned effects. The study showed that there was a statistically significant association between workability traits and functional longevity. Very nervous cows were 26, 23, and 46% more likely to be culled than very calm cows in Holstein, Ayrshire, and Jersey breeds, respectively. Similarly, very slow milkers were 36, 33, and 28% more likely to be culled than average milkers in Holstein, Ayrshire, and Jersey breeds, respectively. Additionally, very fast milkers were 11, 13, and 15% more likely to be culled than average milkers in Holstein, Ayrshire, and Jersey breeds, respectively. Producers might want to avoid consequences associated with the fast milkers such as udder health problems.


Subject(s)
Cattle/genetics , Longevity/genetics , Quantitative Trait, Heritable , Animals , Breeding/methods , Canada , Cattle/physiology , Dairying/methods , Female , Lactation/genetics , Longevity/physiology , Male , Milk/metabolism , Phenotype
5.
J Dairy Sci ; 93(9): 4427-34, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20723717

ABSTRACT

The objectives of this study were a) to estimate the genetic correlation between milk production and some female fertility traits such as 56-d nonreturn rate in cows (NRRC), calving to first service (CTFS), and first service to conception (FSTC); b) to assess the influence of including milk production as a correlated trait on the genetic evaluation of these traits in Canadian Holsteins; and c) to determine if using heifer nonreturn rate (NRRH) had a similar effect as using milk production on cow NRRC evaluation. The data included fertility and production records of first-parity Holstein cows. Genetic parameters were estimated using uni- and bivariate analyses in which milk production at around 90 DIM (TD90M) was included as a correlated trait to NRRC, CTFS, and FTSC. A bivariate analysis was also carried out in which NRRH was included as a correlated trait to NRRC. The models were compared by genetic trend (NRRC, CTFS, and FSTC) and cross-validation and predictability (NRRC). The heritability estimates for NRRC from the uni- and bivariate analyses were 0.017 and 0.020, respectively. The corresponding figures for CTFS were 0.07 and 0.08 and for FSTC were 0.049 and 0.05. The genetic trends for NRRC of the 2 models (NRRC+TD90M and NRRC+NRRH) gave very similar results. However, when milk production was included in the genetic evaluation of CTFS and FSTC, the genetic trends of the 2 fertility traits were higher compared with the univariate analysis. In NRRC evaluation by cross-validation and predictability, the bivariate analyses were more consistent and gave a better predictability than the univariate analysis. However, there was no major difference between the 2 models. Consequently, it might be worth including milk production or heifer fertility as correlated traits in the genetic evaluation of female fertility traits.


Subject(s)
Cattle/genetics , Fertility/genetics , Milk/metabolism , Animals , Canada , Cattle/physiology , Female , Lactation/genetics , Models, Genetic , Parity/genetics , Pregnancy , Quantitative Trait, Heritable , Reproduction/genetics
6.
J Dairy Sci ; 92(9): 4697-706, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19700734

ABSTRACT

The objective of this study was to estimate genetic parameters of production traits in the first 3 parities in Chinese Holsteins. Data were a random sample of complete herds (109,005 test-day records of 9,706 cows from 54 herds) extracted from the original data set, which included 362,304 test-day records of 30,942 Holstein cows from 105 herds. A test-day animal model with multiple-trait random regression and the Gibbs sampling method were used for parameter estimation. Regression curves were modeled using Legendre polynomials of order 4. The multiple-trait analysis included milk, fat, and protein yield, and somatic cell score (SCS). Average daily heritabilities ranged between 0.222 and 0.346 for the yield traits and between 0.092 and 0.187 for SCS. Heritabilities were higher in the third lactation for all traits. Within-parity genetic correlations were very high among the yield traits (>0.806) and were close to zero between SCS and yield traits, especially for first-parity cows. Results were similar to previous literature estimates from studies that used the same model as applied to this study. The estimates found in this study will be used to perform breeding value estimation for national genetic evaluations in Chinese Holsteins.


Subject(s)
Cattle/physiology , Genetic Variation , Lactation/genetics , Models, Genetic , Animals , Cattle/genetics , Cell Count , China , Environment , Fats/analysis , Female , Male , Milk/chemistry , Milk/cytology , Milk Proteins/analysis , Pregnancy , Regression Analysis , Time Factors
7.
J Dairy Sci ; 92(5): 2270-5, 2009 May.
Article in English | MEDLINE | ID: mdl-19389986

ABSTRACT

Preadjustment of phenotypic records is an alternative to accounting for the effect of pregnancy within the genetic evaluation model. Variance components used in the Canadian Test-Day Model may need to be re-estimated after preadjusting for pregnancy. The objective of this study was to assess the effect of preadjusting test-day yields on variance components and estimated breeding values using a random regression test-day model in a random sample of Ayrshire cows. A random sample of 981 Canadian Ayrshire cows from 18 complete herds (average of 54.5 cows/herd) was analyzed. Two data sets were created using the same animals, one with unadjusted milk, fat, and protein yields, and one data set with test-day records adjusted for pregnancy effects. Pregnancy effect estimates from a previous study were used for additive preadjustment of records. Variance components were estimated using both data sets. Results were very similar between the 2 data sets for all estimated genetic parameters (heritabilities, genetic, and permanent environmental correlations). The relative squared differences were very small: 0.05% for heritabilities, 0.20% for genetic correlations, and 0.18% for permanent environmental correlations. Furthermore, paired Student's t-tests showed that the differences between the genetic parameters of data sets adjusted and unadjusted for pregnancy effect were not significantly different from 0. Results from this study show that preadjusting data for pregnancy did not yield changes in covariance component estimates, thus suggesting that preadjusting test-day records could be a feasible solution to account for pregnancy in the Canadian Test-Day Model without changing the current model. Estimated breeding values (EBV) were calculated for both data sets to observe the impact of preadjusting for pregnancy. Overall, the largest changes in EBV seen when preadjusting for pregnancy (compared with unadjusted records) occurred for nonpregnant elite cows, whose EBV declined. Preadjusting for pregnancy before genetic evaluations improves the estimation of breeding values by adding the negative impact of pregnancy back onto pregnant cow test-day records, causing an increase in their production EBV.


Subject(s)
Cattle/physiology , Lactation/physiology , Models, Genetic , Pregnancy, Animal/physiology , Animals , Canada , Cattle/genetics , Environment , Female , Lactation/genetics , Pregnancy , Pregnancy, Animal/genetics
8.
J Dairy Sci ; 91(4): 1660-8, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18349259

ABSTRACT

The aim of this study was to use survival analysis to assess the relationship between reproduction traits and functional longevity of Canadian dairy cattle. Data consisted of 1,702,857; 67,470; and 33,190 Holstein, Ayrshire, and Jersey cows, respectively. Functional longevity was defined as the number of days from first calving to culling, death, or censoring; adjusted for the effect of milk yield. The reproduction traits included calving traits (calving ease, calf size, and calf survival) and female fertility traits (number of services, days from calving to first service, days from first service to conception, and days open). The statistical model was a Weibull proportional hazards model and included the fixed effects of stage of lactation, season of production, the annual change in herd size, and type of milk recording supervision, age at first calving, effects of milk, fat, and protein yields calculated as within herd-year-parity deviations for each reproduction trait. Herd-year-season of calving and sire were included as random effects. Analysis was performed separately for each reproductive trait. Significant associations between reproduction traits and longevity were observed in all breeds. Increased risk of culling was observed for cows that required hard pull, calved small calves, or dead calves. Moreover, cows that require more services per conception, a longer interval between first service to conception, an interval between calving to first service greater than 90 d, and increased days open were at greater risk of being culled.


Subject(s)
Cattle/physiology , Longevity/genetics , Models, Statistical , Reproduction/physiology , Animals , Body Size , Canada , Cattle/genetics , Dairying , Female , Lactation , Longevity/physiology , Male , Pregnancy , Proportional Hazards Models , Reproduction/genetics , Risk Factors , Seasons , Survival Analysis , Time Factors
9.
J Dairy Sci ; 90(4): 2025-8, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17369244

ABSTRACT

The national genetic evaluation of herd life for Canadian dairy breeds was modified from a 3-trait to a 5-trait animal model. The genetic evaluation incorporates information from daughter survival (direct herd life) and information from conformation, fertility, and udder health traits that are related to longevity (indirect herd life). Genetic evaluations for direct herd life were based on cows' survival from first calving to 120 days in milk (DIM), from 120 to 240 DIM, from 240 DIM to second calving, survival to third calving, and survival to fourth calving, which were analyzed using a multiple-trait animal model. Sire evaluations obtained for each of the 5 survival traits were combined into an overall sire evaluation for direct herd life. Sire evaluations for indirect herd life were based on an index of sire evaluations for dairy strength, feet and legs, overall mammary, rump angle, somatic cell score, milking speed, nonreturn rate in cows, and interval from calving to first service. A multiple-trait sire model based on multiple-trait across-country evaluation methodology was used to combine direct and indirect genetic evaluations for herd life into an overall genetic evaluation for herd life. Sire evaluations for herd life were expressed as an estimated transmitting ability for the number of lactations. The transmitting ability represents expected differences among daughters for herd life; and the average herd life was set to 3 lactations.


Subject(s)
Cattle/genetics , Dairying/methods , Models, Genetic , Animals , Canada , Female , Genetic Variation , Lactation/genetics , Longevity/genetics , Male
10.
J Dairy Sci ; 90(3): 1564-74, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17297130

ABSTRACT

The objectives of this study were to estimate variance components for test-day milk, fat, and protein yields and average daily SCS in 3 subsets of Italian Holsteins using a multiple-trait, multiple-lactation random regression test-day animal model and to determine whether a genetic heterogeneous variance adjustment was necessary. Data were test-day yields of milk, fat, and protein and SCS (on a log2 scale) from the first 3 lactations of Italian Holsteins collected from 1992 to 2002. The 3 subsets of data included 1) a random sample of Holsteins from all herds in Italy, 2) a random sample of Holsteins from herds using a minimum of 75% foreign sires, and 3) a random sample of Holsteins from herds using a maximum of 25% foreign sires. Estimations of variances and covariances for this model were achieved by Bayesian methods using the Gibbs sampler. Estimated 305-d genetic, permanent environmental, and residual variance was higher in herds using a minimum of 75% foreign sires compared with herds using a maximum of 25% foreign sires. Estimated average daily heritability of milk, fat, and protein yields did not differ among subsets. Heritability of SCS in the first lactation differed slightly among subsets and was estimated to be the highest in herds with a maximum of 25% foreign sire use (0.19 +/- 0.01). Genetic correlations across lactations for milk, fat, and protein yields were similar among subsets. Genetic correlations across lactations for SCS were 0.03 to 0.08 higher in herds using a minimum of 75% or a maximum of 25% foreign sires, compared with herds randomly sampled from the entire population. Results indicate that adjustment for heterogeneous variance at the genetic level based on the percentage of foreign sire use should not be necessary with a multiple-trait random regression test-day animal model in Italy.


Subject(s)
Cattle/genetics , Lactation/physiology , Models, Genetic , Animals , Environment , Fats/analysis , Female , Genetic Variation , Heredity/genetics , Italy , Male , Milk/chemistry , Milk/cytology , Milk/metabolism , Milk Proteins/genetics , Regression Analysis
11.
J Dairy Sci ; 89(9): 3609-14, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16899696

ABSTRACT

The aim of this study was to assess the level of somatic cell count (SCC) and to explore the impact of somatic cell score (SCS) on the functional longevity of Canadian dairy cattle by using a Weibull proportional hazards model. Data consisted of 1,911,428 cows from 15,970 herds sired by 7,826 sires for Holsteins, 80,977 cows in 2,036 herds from 1,153 sires for Ayrshires, and 53,114 cows in 1,372 herds from 1,758 sires for Jerseys. Functional longevity was defined as the number of days from the first calving to culling, death, or censoring. The test-day SCC was transformed to a linear score, and the resulting SCS were averaged within each lactation. The average SCS were grouped into 10 classes. The statistical model included the effects of stage of lactation; season of production; annual change in herd size; type of milk recording supervision; age at first calving; effects of milk, fat, and protein yields, calculated as within-herd-year-parity deviations; herd-year-season of calving; SCS class; and sire. The relative culling rate was calculated for animals in each SCS class after accounting for the aforementioned effects. The overall average SCC for Holsteins was 167,000 cells/mL, for Ayrshires was 155,000 cells/mL, and for the Jerseys was 212,000 cells/mL. In all breeds there were no appreciable differences in the relative risk of culling among classes of SCS breed averages (i.e., up to a SCS of 5). However, as the SCS increased beyond the breed average, the relative risk of cows being culled increased considerably. For instance, Holstein, Ayrshire, and Jersey cows with the highest classes of SCS had, respectively, a 4.95, 6.73, and 6.62 times greater risk of being culled than cows with average SCS.


Subject(s)
Cattle/physiology , Lactation/physiology , Longevity/physiology , Milk/cytology , Age Factors , Animals , Canada , Cell Count/veterinary , Dairying/methods , Female , Mastitis, Bovine/diagnosis , Mastitis, Bovine/economics , Mastitis, Bovine/physiopathology , Milk/chemistry , Phenotype , Proportional Hazards Models , Seasons
12.
J Dairy Sci ; 89(6): 2210-6, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16702287

ABSTRACT

The aim of this study was to assess the level of inbreeding and its relationship to the functional survival of Canadian dairy breeds by using a Weibull proportional hazard model. Data consisted of records from 72,385 cows in 1,505 herds from 2,499 sires for Jerseys, 112,723 cows in 1,482 herds from 2,926 sires for Ayrshires, and 1,977,311 cows in 17,182 herds from 8,261 sires for Holsteins. Longevity was defined as the number of days from first calving to culling, death, or censoring. Inbreeding coefficients (F) were grouped into 7 classes (F = 0, 0 < F < 3.125, 3.125 < or = F < 6.25, 6.25 < or = F <12.5, 12.5 < or = F < 18.25, 18.25 < or = F < 25.0, and F > or = 25.0%). The statistical model included the effects of stage of lactation, season of production, the annual change in herd size, type of milk recording supervision, age at first calving, effects of milk, fat, and protein yields calculated as within herd-year-parity deviations, herd-year-season of calving, inbreeding, and sire. The relative culling rate was calculated for animals in each class after accounting for the above-mentioned effects. A trend toward increased risk of culling among more inbred animals was observed for all breeds. Little difference in survival was observed for cows with 0 < F <12.5%. The relative risk ratios (relative to F = 0) for cows with inbreeding coefficients up to 12.5% were 1.19, 1.16, and 1.14 for Jersey, Ayrshire, and Holstein cows, respectively. Greater effects of inbreeding were seen, however, when F increased beyond 12.5%.


Subject(s)
Cattle/genetics , Cattle/physiology , Inbreeding , Longevity/genetics , Aging , Algorithms , Animals , Canada , Dairying/methods , Fats/analysis , Female , Lactation , Male , Milk/chemistry , Milk Proteins/analysis , Pedigree , Population Density , Pregnancy , Proportional Hazards Models , Seasons
13.
J Dairy Sci ; 88(6): 2199-208, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15905449

ABSTRACT

Age at first insemination, days from calving to first insemination, number of services, first-service nonreturn rate to 56 d, days from first service to conception, calving ease, stillbirth, gestation length, and calf size of Canadian Holstein cows were jointly analyzed in a linear multiple-trait model. Traits covered a wide spectrum of aspects related to reproductive performance of dairy cows. Other frequently used fertility characteristics, like days open or calving intervals, could easily be derived from the analyzed traits. Data included 94,250 records in parities 1 to 6 on 53,158 cows from Ontario and Quebec, born in the years 1997 to 2002. Reproductive characteristics of heifers and cows were treated as different but genetically correlated traits that gave 16 total traits in the analysis. Repeated records for later parities were modeled with permanent environmental effects. Direct and maternal genetic effects were included in linear models for traits related to calving performance. Bayesian methods with Gibbs sampling were used to estimate covariance components of the model and respective genetic parameters. Estimates of heritabilities for fertility traits were low, from 3% for nonreturn rate in heifers to 13% for age at first service. Interval traits had higher heritabilities than binary or categorical traits. Service sire, sire of calf, and artificial insemination technician were important (relative to additive genetic) sources of variation for nonreturn rate and traits related to calving performance. Fertility traits in heifers and older cows were not the same genetically (genetic correlations in general were smaller than 0.9). Genetic correlations (both direct and maternal) among traits indicated that different traits measured different aspects of reproductive performance of a dairy cow. These traits could be used jointly in a fertility index to allow for selection for better fertility of dairy cattle.


Subject(s)
Cattle/genetics , Reproduction/genetics , Animals , Breeding , Canada , Cattle/physiology , Female , Insemination, Artificial/veterinary , Male , Models, Statistical , Pregnancy , Quantitative Trait, Heritable , Seasons
14.
J Dairy Sci ; 88(4): 1552-60, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15778325

ABSTRACT

The aim of this study was to use a Weibull proportional hazards model to explore the impact of type traits on the functional survival of Canadian Jersey and Ayrshire cows. The data set consisted of 49,791 registered Jersey cows from 900 herds calving from 1985 to 2003. The corresponding figures for Ayrshire were 77,109 cows and 921 herds. Functional survival was defined as the number of days from first calving to culling, death, or censoring. Type information consisted of phenotypic type scores for 8 composite traits and 19 linear descriptive traits. The statistical model included the effects of stage of lactation; season of production; annual change in herd size; type of milk recording supervision; age at first calving; effects of milk, fat, and protein yields calculated as within herd-year-parity deviations; herd-year-season of calving; each type trait; and the animal's sire. Analysis was done one trait at a time for each of 27 type traits in each breed. The relative culling risk was calculated for animals in each class after accounting for the previously mentioned effects. Among the composite type traits with the greatest contribution to the likelihood function was final score followed by mammary system for Jersey breed, while in Ayrshire breed feet and legs was the second most important trait next to final score. Cows classified as Poor for final score in both breeds were >5 times more likely to be culled compared with the cows classified as Good Plus. In both breeds, cows classified as Poor for feet and legs were 5 times more likely to be culled than were cows classified as Excellent, and cows classified as Excellent for mammary system were >9 times more likely to survive than were cows classified as Poor.


Subject(s)
Cattle/genetics , Cattle/physiology , Longevity/genetics , Mammary Glands, Animal/anatomy & histology , Reproduction/genetics , Animals , Body Constitution/genetics , Body Constitution/physiology , Cattle/anatomy & histology , Extremities/anatomy & histology , Female , Longevity/physiology , Male , Mammary Glands, Animal/physiology , Models, Statistical , Proportional Hazards Models , Reproduction/physiology , Seasons , Survival Analysis , Time Factors
15.
J Dairy Sci ; 88(1): 368-75, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15591401

ABSTRACT

The objectives of this study were to identify the most important factors that influence functional survival and to estimate the genetic parameters of functional survival for Canadian dairy cattle. Data were obtained from lactation records extracted for the May 2002 genetic evaluation of Holstein, Jersey, and Ayrshire breeds that calved between July 1, 1985 and April 5, 2002. Analysis was performed using a Weibull proportional hazard model, and the baseline hazard function was defined on a lactation basis instead of the traditional analysis of the whole length of life. The statistical model included the effects of stage of lactation; season of production; the annual change in herd size; type of milk recording supervision; age at first calving; effects of milk, fat, and protein yields calculated within herd-year-parity deviations; and the random effects of herd-year-season of calving and sire. All effects fitted in the model had a significant effect on functional survival of cows in all breeds. Milk yield was by far the most important factor influencing survival, and the hazard increased as the milk production of the cows decreased. The hazard also increased as the fat content increased compared with the average group. Heifers that were older at calving were at higher risk of being culled, and expanding herds were at lower risk of being culled compared with stable herds. More culling was found in unsupervised herds than in supervised herds. The heritability values obtained were 0.14, 0.10, and 0.09 for Holstein, Jersey, and Ayrshire, respectively. Rank correlation between estimated breeding values (EBV) obtained from the current national genetic evaluation of direct herd life and the survival kit used in this study ranged from 0.65 to 0.87, depending on the number of daughters per sire. Estimated genetic trend obtained using the survival kit was overestimated.


Subject(s)
Cattle/genetics , Lactation/genetics , Proportional Hazards Models , Animals , Breeding , Canada , Dairying , Female , Lipids/analysis , Longevity , Male , Milk/chemistry , Milk Proteins/analysis , Parity , Population Density , Pregnancy , Seasons
16.
J Dairy Sci ; 87(11): 3938-46, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15483178

ABSTRACT

The aim of this study was to explore the impact of type traits on the functional survival of Canadian Holstein cows using a Weibull proportional hazards model. The data set consisted of 1,130,616 registered cows from 13,606 herds calving from 1985 to 2003. Functional survival was defined as the number of days from first calving to culling, death, or censoring. Type information consisted of phenotypic type scores for 8 composite traits (with 18 classes of each) and 23 linear descriptive traits (with 9 classes of each). The statistical model included the effects of stage of lactation, season of production, the annual change in herd size, type of milk recording supervision, age at first calving, effects of milk, fat and protein yields calculated within herd-year-parity deviations, herd-year-season of calving, each type trait, and the sire. Analysis was done one at a time for each of 31 type traits. The relative culling risk was calculated for animals in each class after accounting for the previously mentioned effects. Among the composite type traits with the greatest contribution to the likelihood function were final score, mammary system, and feet and legs, all having a strong relationship with functional survival. Cows with low scores for these traits had higher risk of culling compared with higher scores. For instance, cows classified as poor plus 1 vs. excellent plus 1 have a relative risk of culling 3.66 and 0.28, respectively. The corresponding figures for mammary system are 4.19 and 0.46 and for feet and legs are 2.34 and 0.50. Linear type traits with the greatest contribution to the likelihood function were fore udder attachment, udder texture, udder depth, rear udder attachment height, and rear udder attachment width. Stature and size had no strong relationship with functional survival.


Subject(s)
Cattle/genetics , Cattle/physiology , Longevity/genetics , Mammary Glands, Animal/anatomy & histology , Models, Statistical , Animals , Body Constitution/genetics , Cattle/anatomy & histology , Extremities/anatomy & histology , Female , Male , Mammary Glands, Animal/physiology , Proportional Hazards Models , Risk , Seasons , Survival Analysis , Time Factors
17.
J Dairy Sci ; 83(5): 1135-44, 2000 May.
Article in English | MEDLINE | ID: mdl-10821590

ABSTRACT

The Canadian Test-Day Model is a 12-trait random regression animal model in which traits are milk, fat, and protein test-day yields, and somatic cell scores on test days within each of first three lactations. Test-day records from later lactations are not used. Random regressions (genetic and permanent environmental) were based on Wilmink's three parameter function that includes an intercept, regression on days in milk, and regression on an exponential function to the power -0.05 times days in milk. The model was applied to over 22 million test-day records of over 1.4 million cows in seven dairy breeds for cows first calving since 1988. A theoretical comparison of test-day model to 305-d complete lactation animal model is given. Each animal in an analysis receives 36 additive genetic solutions (12 traits by three regression coefficients), and these are combined to give one estimated breeding value (EBV) for each of milk, fat, and protein yields, average daily somatic cell score and milk yield persistency (for bulls only). Correlation of yield EBV with previous 305-d lactation model EBV for bulls was 0.97 and for cows was 0.93 (Holsteins). A question is whether EBV for yield traits for each lactation should be combined into one overall EBV, and if so, what method to combine them. Implementation required development of new methods for approximation of reliabilities of EBV, inclusion of cows without test day records in analysis, but which were still alive and had progeny with test-day records, adjustments for heterogeneous herd-test date variances, and international comparisons. Efforts to inform the dairy industry about changes in EBV due to the model and recovering information needed to explain changes in specific animals' EBV are significant challenges. The Canadian dairy industry will require a year or more to become comfortable with the test-day model and to realize the impact it could have on selection decisions.


Subject(s)
Cattle/genetics , Lactation/genetics , Models, Statistical , Analysis of Variance , Animals , Breeding , Canada , Environment , Female , Male , Milk/chemistry , Milk/cytology , Regression Analysis
18.
J Dairy Sci ; 80(10): 2550-6, 1997 Oct.
Article in English | MEDLINE | ID: mdl-9361229

ABSTRACT

Random regression models have been proposed for the genetic evaluation of dairy cattle using test day records. Random regression models contain linear functions of fixed and random coefficients and a set of covariates to describe the shapes of lactation curves for groups of cows and for individual cows. Previous work has used a linear function of five covariates to describe lactation shape. This study compared the function of five covariates with a function of only three covariates in three random regression models. Comparisons of estimates of components of variances and covariances, as well as comparisons of EBV and their prediction errors for milk yield, were made among models. Small practical differences existed between models in all respects. The model using regressions with five covariates had a slight advantage for comparison of prediction error variances of daily yields.


Subject(s)
Cattle/genetics , Lactation/genetics , Models, Statistical , Regression Analysis , Animals , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...