Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Parasit Vectors ; 17(1): 12, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38184590

ABSTRACT

BACKGROUND: The high prevalence of metabolic syndrome in low- and middle-income countries is linked to an increase in Western diet consumption, characterized by a high intake of processed foods, which impacts the levels of blood sugar and lipids, hormones, and cytokines. Hematophagous insect vectors, such as the yellow fever mosquito Aedes aegypti, rely on blood meals for reproduction and development and are therefore exposed to the components of blood plasma. However, the impact of the alteration of blood composition due to malnutrition and metabolic conditions on mosquito biology remains understudied. METHODS: In this study, we investigated the impact of whole-blood alterations resulting from a Western-type diet on the biology of Ae. aegypti. We kept C57Bl6/J mice on a high-fat, high-sucrose (HFHS) diet for 20 weeks and followed biological parameters, including plasma insulin and lipid levels, insulin tolerance, and weight gain, to validate the development of metabolic syndrome. We further allowed Ae. aegypti mosquitoes to feed on mice and tracked how altered host blood composition modulated parameters of vector capacity. RESULTS: Our findings identified that HFHS-fed mice resulted in reduced mosquito longevity and increased fecundity upon mosquito feeding, which correlated with alteration in the gene expression profile of nutrient sensing and physiological and metabolic markers as studied up to several days after blood ingestion. CONCLUSIONS: Our study provides new insights into the overall effect of alterations of blood components on mosquito biology and its implications for the transmission of infectious diseases in conditions where the frequency of Western diet-induced metabolic syndromes is becoming more frequent. These findings highlight the importance of addressing metabolic health to further understand the spread of mosquito-borne illnesses in endemic areas.


Subject(s)
Aedes , Insulins , Metabolic Syndrome , Rodent Diseases , Animals , Mice , Longevity , Aedes/genetics , Diet, Western , Mosquito Vectors/genetics , Fertility , Vertebrates , Gene Expression
2.
J Interferon Cytokine Res ; 43(7): 287-298, 2023 07.
Article in English | MEDLINE | ID: mdl-37428556

ABSTRACT

Diet-induced obesity triggers elevation of circulating pro-inflammatory cytokines and acute-phase proteins, including interferons (IFNs). IFNs strongly contribute to low-grade inflammation associated with obesity-related complications, such as nonalcoholic fat liver disease and diabetes. In this study, AG129 mice model (double-knockout strain for IFN α/ß/γ receptors) was fed with a high-fat high-sucrose (HFHS) diet (Western diet) for 20 weeks aiming to understand the impact of IFN receptor ablation on diet-induced obesity, insulin resistance, and nonalcoholic fat liver disease. Mice were responsive to the diet, becoming obese after 20 weeks of HFHS diet which was accompanied by 2-fold increase of white adipose tissues. Moreover, animals developed glucose and insulin intolerance, as well as dysregulation of insulin signaling mediators such as Insulin Receptor Substrate 1 (IRS1), protein kinase B (AKT), and S6 ribosomal protein. Liver increased interstitial cells, and lipid accumulation was also found, presenting augmented fibrotic markers (transforming growth factor beta 1 [Tgfb1], Keratin 18 [Krt18], Vimentin [Vim]), yet lower expression on IFN receptor downstream proteins (Toll-like receptor [TLR] 4, nuclear factor kappa-light-chain-enhancer of activated B cells [NFκB], and cAMP response element-binding protein [CREB]). Thus, IFN receptor ablation promoted effects on NFκB and CREB pathways, with no positive effects on systemic homeostasis in diet-induced obese mice. Therefore, we conclude that IFN receptor signaling is not essential for promoting the complications of diet-induced obesity and thus cannot be correlated with metabolic diseases in a noninfectious condition.


Subject(s)
Insulin Resistance , Non-alcoholic Fatty Liver Disease , Mice , Animals , Insulin Resistance/physiology , Diet, Western , Obesity/complications , Liver/metabolism , Insulin/metabolism , Non-alcoholic Fatty Liver Disease/complications , Diet, High-Fat/adverse effects , Receptors, Interferon/metabolism , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...