Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 25(13): 7328-34, 2009 Jul 07.
Article in English | MEDLINE | ID: mdl-19563225

ABSTRACT

We report an approach of exploring the interaction between cationic surfactants and a type of structurally well-defined, spherical "Keplerate" polyoxometalate (POM) macroanionic molecular clusters, {Mo72V30}, in aqueous solution. The effectiveness of the interaction can be determined by monitoring the size change of the "blackberry" supramolecular structures formed by the self-assembly of {Mo72V30} macroions, which is determined by the effective charge density on the macroions. Long-chain surfactants (CTAB and CTAT) can interact with {Mo72V30} macroions stoichiometrically and lower their charge density. Consequently, the blackberry size decreases continuously with increasing surfactant concentration in solution. On the other hand, for short-chain surfactants (e.g., OTAB), a larger fraction of surfactants exist as discrete chains in solution and do not strongly interact with the macroions. This approach shows that a controllable amount of suitable surfactants can accurately tune the charge on large molecular clusters.

3.
Dalton Trans ; (26): 5094-100, 2009 Jul 14.
Article in English | MEDLINE | ID: mdl-19562168

ABSTRACT

We report the self-assembly processes in solution of three Keplerate-type molybdenum-oxide based clusters {Mo72V30}, {Mo72Cr30} and {Mo72Fe30} (all with diameters of approximately 2.5 nm). These clusters behave as unique weak polyprotic acids owing to the external water ligands attached to the non-Mo metal centers. Whereas the Cr and Fe clusters have 30 water ligands attached at the 30 M3+ centers pointing outside, {Mo72V30} has 20 water ligands coordinated to vanadium atoms, of which only 10 are pointing outside. The self-assembly processes of the Keplerates leading to supramolecular blackberry-type structures are influenced by the effective charge densities on the cluster surfaces, which can be tuned by the pH values and solvent properties. As expected, {Mo72Cr30} and {Mo72Fe30} behave similarly in aqueous solution due to their analogous structures and in both cases the self-assembly follows the partial deprotonation of the external water ligands attached to the non-Mo metal centers. However, the M-OH2 functionalities differ not only in acidity but also lability, i.e. in different residence times of the H2O ligands. In contrast to {Mo72Cr30} and {Mo72Fe30}, the {Mo72V30} clusters carry a rather large number of negative charges so that their solution properties are different. They exist as discrete macroions in dilute aqueous solution, and form only in mixed water/organic solvent (like acetone) blackberry-type structures whose size increases with acetone content. The comparison of the properties of the clusters allows more general information about the interesting self-assembly phenomenon to be unveiled.

5.
Phys Rev Lett ; 99(6): 066104, 2007 Aug 10.
Article in English | MEDLINE | ID: mdl-17930844

ABSTRACT

We show that the equilibrium size of single-layer shells composed of polyoxometalate macroions is inversely proportional to the dielectric constant of the medium in which they are dispersed. This behavior is consistent with a stabilization mechanism based on Coulomb repulsion combined with charge regulation. We estimate the cohesive energy per bond between macroions on the shells to be approximately -6kT. This number is extracted from analysis based on a charge regulation model in combination with a model for defects on a sphere. The value of the cohesive bond energy is in agreement with the model-independent critical aggregate concentration. This observation points to a new class of thermodynamically stable shell-like objects. We point out the possible relevance our findings have for certain surfactant systems.

6.
J Am Chem Soc ; 129(20): 6453-60, 2007 May 23.
Article in English | MEDLINE | ID: mdl-17465544

ABSTRACT

A complete, continuous transition from discrete macroions to blackberry structures, and then back to discrete macroions, is reported for the first time in the system of {Mo132}/water/acetone, with {Mo132} (full formula (NH4)42[Mo132O372(CH3COO)30(H2O)72].ca.300H2O.ca.10CH3COONH4) as the C60-like anionic polyoxomolybdate molecular clusters. Laser light scattering studies reveal the presence of the self-assembled {Mo132} blackberry structures in water/acetone mixed solvents containing 3 vol % to 70 vol % acetone, with the average hydrodynamic radius (Rh) of blackberries ranging from 45 to 100 nm with increasing acetone content. Only discrete {Mo132} clusters are found in solutions containing <3 vol % and >70 vol % acetone. The complete discrete macroion (cluster)-blackberry-discrete macroion transition helps to identify the driving forces behind the blackberry formation, a new type of self-assembly process. The charge density on the macroions is found to greatly affect the blackberry formation and dissociation, as the counterion association is very dominant around blackberries. The transitions between single {Mo132} clusters and blackberries, and between the blackberries with different sizes, are achieved by only changing the solvent quality.

7.
Small ; 3(6): 986-92, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17385209

ABSTRACT

The cluster {(Mo)Mo5}12Fe(III)30 1 a present in compound 1 (cluster diameter approximately 2.3 nm), which belongs to the family of nanoscale spherical porous {(Mo)Mo5}12{Linker}30 capsules that allow a new type of nanochemistry inside their cavities as well as unprecedented aggregation processes under gaseous, solution, and solid-state conditions, is the starting material for the present investigation. In solution it reacts with LnCl3 x nH2O (Ln = Ce, Pr) thereby replacing six Fe(III) ions with Ln(III) ions to form compounds 2 (Ce) and 3 (Pr). During metal-cation exchange, some of the pentagonal {(Mo)Mo5O21(H2O)6}6- units, which are connected to the Fe(III) centers in 1 a, decompose, thus leading to a temporary capsule opening and uptake of the formed smaller molybdate units into the capsule cavities. In 2 and 3, the pentagonal units are connected via 24 Fe(III) and six Ln(III)-type linkers/spacers representing together the capsule skeletons, which are structurally well-defined in contrast to the capsule contents. The new capsules self-associate into single-layer blackberry-type structures, thus extending the variety of these types of assemblies; the assembly process, that is, the size of the final species, can be controlled by the pH, which allows the generation of differently sized nanoparticles. Magnetic properties of the two new nanomaterials 2 and 3 are also determined.


Subject(s)
Ferric Compounds/chemistry , Metal Nanoparticles/chemistry , Molybdenum/chemistry , Nanocapsules/chemistry , Models, Molecular , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...