Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 14: 1028643, 2023.
Article in English | MEDLINE | ID: mdl-36798943

ABSTRACT

Introduction: Endurance exercise alters whole-body as well as skeletal muscle metabolism and physiology, leading to improvements in performance and health. However, biological mechanisms underlying the body's adaptations to different endurance exercise protocols are not entirely understood. Methods: We applied a multi-platform metabolomics approach to identify urinary metabolites and associated metabolic pathways that distinguish the acute metabolic response to two endurance exercise interventions at distinct intensities. In our randomized crossover study, 16 healthy, young, and physically active men performed 30 min of continuous moderate exercise (CME) and continuous vigorous exercise (CVE). Urine was collected during three post-exercise sampling phases (U01/U02/U03: until 45/105/195 min post-exercise), providing detailed temporal information on the response of the urinary metabolome to CME and CVE. Also, fasting spot urine samples were collected pre-exercise (U00) and on the following day (U04). While untargeted two-dimensional gas chromatography-mass spectrometry (GC×GC-MS) led to the detection of 608 spectral features, 44 metabolites were identified and quantified by targeted nuclear magnetic resonance (NMR) spectroscopy or liquid chromatography-mass spectrometry (LC-MS). Results: 104 urinary metabolites showed at least one significant difference for selected comparisons of sampling time points within or between exercise trials as well as a relevant median fold change >1.5 or <0. 6 ¯ (NMR, LC-MS) or >2.0 or <0.5 (GC×GC-MS), being classified as either exercise-responsive or intensity-dependent. Our findings indicate that CVE induced more profound alterations in the urinary metabolome than CME, especially at U01, returning to baseline within 24 h after U00. Most differences between exercise trials are likely to reflect higher energy requirements during CVE, as demonstrated by greater shifts in metabolites related to glycolysis (e.g., lactate, pyruvate), tricarboxylic acid cycle (e.g., cis-aconitate, malate), purine nucleotide breakdown (e.g., hypoxanthine), and amino acid mobilization (e.g., alanine) or degradation (e.g., 4-hydroxyphenylacetate). Discussion: To conclude, this study provided first evidence of specific urinary metabolites as potential metabolic markers of endurance exercise intensity. Future studies are needed to validate our results and to examine whether acute metabolite changes in urine might also be partly reflective of mechanisms underlying the health- or performance-enhancing effects of endurance exercise, particularly if performed at high intensities.

2.
Metabolites ; 11(7)2021 Jul 17.
Article in English | MEDLINE | ID: mdl-34357357

ABSTRACT

Cardiorespiratory fitness (CRF) represents a strong predictor of all-cause mortality and is strongly influenced by regular physical activity (PA). However, the biological mechanisms involved in the body's adaptation to PA remain to be fully elucidated. The aim of this study was to systematically examine the relationship between CRF and plasma metabolite patterns in 252 healthy adults from the cross-sectional Karlsruhe Metabolomics and Nutrition (KarMeN) study. CRF was determined by measuring the peak oxygen uptake during incremental exercise. Fasting plasma samples were analyzed by nuclear magnetic resonance spectroscopy and mass spectrometry coupled to one- or two-dimensional gas chromatography or liquid chromatography. Based on this multi-platform metabolomics approach, 427 plasma analytes were detected. Bi- and multivariate association analyses, adjusted for age and menopausal status, showed that CRF was linked to specific sets of metabolites primarily indicative of lipid metabolism. However, CRF-related metabolite patterns largely differed between sexes. While several phosphatidylcholines were linked to CRF in females, single lyso-phosphatidylcholines and sphingomyelins were associated with CRF in males. When controlling for further assessed clinical and phenotypical parameters, sex-specific CRF tended to be correlated with a smaller number of metabolites linked to lipid, amino acid, or xenobiotics-related metabolism. Interestingly, sex-specific CRF explanation models could be improved when including selected plasma analytes in addition to clinical and phenotypical variables. In summary, this study revealed sex-related differences in CRF-associated plasma metabolite patterns and proved known associations between CRF and risk factors for cardiometabolic diseases such as fat mass, visceral adipose tissue mass, or blood triglycerides in metabolically healthy individuals. Our findings indicate that covariates like sex and, especially, body composition have to be considered when studying blood metabolic markers related to CRF.

3.
Metabolites ; 10(5)2020 May 21.
Article in English | MEDLINE | ID: mdl-32455749

ABSTRACT

Knowledge on metabolites distinguishing the metabolic response to acute physical exercise between fit and less fit individuals could clarify mechanisms and metabolic pathways contributing to the beneficial adaptations to exercise. By analyzing data from the cross-sectional KarMeN (Karlsruhe Metabolomics and Nutrition) study, we characterized the acute effects of a standardized exercise tolerance test on urinary metabolites of 255 healthy women and men. In a second step, we aimed to detect a urinary metabolite pattern associated with the cardiorespiratory fitness (CRF), which was determined by measuring the peak oxygen uptake (VO2peak) during incremental exercise. Spot urine samples were collected pre- and post-exercise and 47 urinary metabolites were identified by nuclear magnetic resonance (NMR) spectroscopy. While the univariate analysis of pre-to-post-exercise differences revealed significant alterations in 37 urinary metabolites, principal component analysis (PCA) did not show a clear separation of the pre- and post-exercise urine samples. Moreover, both bivariate correlation and multiple linear regression analyses revealed only weak relationships between the VO2peak and single urinary metabolites or urinary metabolic pattern, when adjusting for covariates like age, sex, menopausal status, and lean body mass (LBM). Taken as a whole, our results show that several urinary metabolites (e.g., lactate, pyruvate, alanine, and acetate) reflect acute exercise-induced alterations in the human metabolism. However, as neither pre- and post-exercise levels nor the fold changes of urinary metabolites substantially accounted for the variation of the covariate-adjusted VO2peak, our results furthermore indicate that the urinary metabolites identified in this study do not allow to draw conclusions on the individual's physical fitness status. Studies investigating the relationship between the human metabolome and functional variables like the CRF should adjust for confounders like age, sex, menopausal status, and LBM.

4.
Metabolites ; 9(7)2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31295919

ABSTRACT

High-intensity interval training (HIIT) is known to improve performance and skeletal muscle energy metabolism. However, whether the body's adaptation to an exhausting short-term HIIT is reflected in the resting human metabolome has not been examined so far. Therefore, a randomized controlled intervention study was performed to investigate the effect of a ten-day HIIT on the resting urinary metabolome of young active men. Fasting spot urine was collected before (-1 day) and after (+1 day; +4 days) the training intervention and 65 urinary metabolites were identified by liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy. Metabolite concentrations were normalized to urinary creatinine and subjected to univariate statistical analysis. One day after HIIT, no overall change in resting urinary metabolome, except a significant difference with decreasing means in urinary hypoxanthine concentration, was documented in the experimental group. As hypoxanthine is related to purine degradation, lower resting urinary hypoxanthine levels may indicate a training-induced adaptation in purine nucleotide metabolism.

SELECTION OF CITATIONS
SEARCH DETAIL
...