Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 7: 10903, 2016 Mar 29.
Article in English | MEDLINE | ID: mdl-27020134

ABSTRACT

The magnetic field-induced changes in the conductivity of metals are the subject of intense interest, both for revealing new phenomena and as a valuable tool for determining their Fermi surface. Here we report a hitherto unobserved magnetoresistive effect in ultra-clean layered metals, namely a negative longitudinal magnetoresistance that is capable of overcoming their very pronounced orbital one. This effect is correlated with the interlayer coupling disappearing for fields applied along the so-called Yamaji angles where the interlayer coupling vanishes. Therefore, it is intrinsically associated with the Fermi points in the field-induced quasi-one-dimensional electronic dispersion, implying that it results from the axial anomaly among these Fermi points. In its original formulation, the anomaly is predicted to violate separate number conservation laws for left- and right-handed chiral (for example, Weyl) fermions. Its observation in PdCoO2, PtCoO2 and Sr2RuO4 suggests that the anomaly affects the transport of clean conductors, in particular near the quantum limit.

3.
Sci Rep ; 3: 1446, 2013.
Article in English | MEDLINE | ID: mdl-23486091

ABSTRACT

Here, we report the discovery of superconductivity in a new transition metal-chalcogenide compound, i.e. Nb2Pd0.81S5, with a transition temperature Tc is approximately equal to 6.6 K. Despite its relatively low Tc, it displays remarkably high and anisotropic superconducting upper critical fields, e.g. µ0Hc2 (T → 0 K) > 37 T for fields applied along the crystallographic b-axis. For a field applied perpendicularly to the b-axis, µ0Hc2 shows a linear dependence in temperature which coupled to a temperature-dependent anisotropy of the upper critical fields, suggests that Nb2Pd0.81S5 is a multi-band superconductor. This is consistent with band structure calculations which reveal nearly cylindrical and quasi-one-dimensional Fermi surface sheets having hole and electron character, respectively. The static spin susceptibility as calculated through the random phase approximation, reveals strong peaks suggesting proximity to a magnetic state and therefore the possibility of unconventional superconductivity.

4.
Phys Rev Lett ; 106(5): 056602, 2011 Feb 04.
Article in English | MEDLINE | ID: mdl-21405419

ABSTRACT

Studies of the structure, magnetization, and resistivity under pressure on stoichiometric normal spinel Co[V(2)]O(4) single crystals show (i) absence of a structural distortion, (ii) abnormal magnetic critical exponents, and (iii) metallic conductivity induced by pressures at low temperatures. All these results prove that Co[V(2)]O(4) sits on the edge of the itinerant-electron limit. Compared with similar measurements on Fe[V(2)]O(4) and other A[V(2)]O(4) studies, it is shown that a critical V-V separation for a localized-itinerant electronic phase transition exists.

SELECTION OF CITATIONS
SEARCH DETAIL
...