Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 64(2): 259-67, 2008 Feb 20.
Article in Japanese | MEDLINE | ID: mdl-18311032

ABSTRACT

In digital mammograms, granularity is an important image property for the detection of microcalcifications and masses. Therefore, we investigated the relationship between the conditions of various exposure doses and the detectability of RMI156 phantom images with and without image processing for the reduction of exposure dose. The images are processed with Gaussian filter and unsharp-masking filters to evaluate the effects on image properties by using the digital Wiener spectrum (WS) presampled modulation transfer function (MTF). In addition, observer performance tests for the detectability of microcalcifications and masses are performed. With Gaussian filtering, the WS value decreased to 50% at 2.0 cycles/mm and the detectability score of masses increased 80% and 12%, on 1.34 mGy and 2.62 mGy, respectively (p<0.05). With unsharp-masking (7 x 7 pixels), the MTF value increased to 126% at 2.0 cycles/mm, and the detectability of microcalcification to 32% and 5%, on 1.34 mGy and 5.28 mGy, respectively (p<0.05) compared with the original image. The optimal dose of simulated lesions with unsharp masking became 5.25 mGy. The unsharp masking could reduce 37% of the exposure dose without a loss of detectability of microcalcifications and masses.


Subject(s)
Mammography , Radiation Dosage , Radiographic Image Enhancement , Image Interpretation, Computer-Assisted , Phantoms, Imaging
2.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 63(12): 1362-9, 2007 Dec 20.
Article in Japanese | MEDLINE | ID: mdl-18310996

ABSTRACT

We investigated and evaluated the detection of simulated lesions in various interstitial lung diseases using the dual-energy subtraction radiography method and flat-panel detector (FPD) images. We obtained a FPD system (GE Revolution XR/d), and employed dual-energy 60 kV and 130 kV exposure techniques. Three types of lung lesions, namely, micro-nodule, ground-glass, and honeycomb patterns were simulated with interstitial lung disease on a chest phantom. Chest images with and without simulated lesions were exposed and compared with standard images and subtraction images. We carried out evaluations with and without subtraction images and performed the analysis by using receiver operating characteristic (ROC) analysis of detection. Results showed that the detection of interstitial lung diseases was significantly improved by the use of subtraction images. The area under the ROC curve (AUC) values of micro-nodule images obtained with and without subtraction images were 0.768 and 0.963, ground-glass images 0.670 and 0.917, and honeycomb images 0.768 and 0.996, respectively. A significant difference of p<0.05 was accepted. The use of dual-energy subtraction radiography with a FPD improved diagnostic accuracy in detecting cases of multiple interstitial lung diseases and was considered useful.


Subject(s)
Lung Diseases, Interstitial/diagnostic imaging , Subtraction Technique , Area Under Curve , Humans , Phantoms, Imaging , ROC Curve , Radiography
SELECTION OF CITATIONS
SEARCH DETAIL
...