Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38003546

ABSTRACT

In Arabidopsis thaliana (Arabidopsis), nonhost resistance (NHR) is influenced by both leaf age and the moment of inoculation. While the circadian clock and photoperiod have been linked to the time-dependent regulation of NHR in Arabidopsis, the mechanism underlying leaf age-dependent NHR remains unclear. In this study, we investigated leaf age-dependent NHR to Pyricularia oryzae in Arabidopsis. Our findings revealed that this NHR type is regulated by both miR156-dependent and miR156-independent pathways. To identify the key players, we utilized rice-FOX Arabidopsis lines and identified the rice HD-Zip I OsHOX6 gene. Notably, OsHOX6 expression confers robust NHR to P. oryzae and Colletotrichum nymphaeae in Arabidopsis, with its effect being contingent upon leaf age. Moreover, we explored the role of AtHB7 and AtHB12, the Arabidopsis closest homologues of OsHOX6, by studying mutants and overexpressors in Arabidopsis-C. higginsianum interaction. AtHB7 and AtHB12 were found to contribute to both penetration resistance and post-penetration resistance to C. higginsianum in a leaf age- and time-dependent manner. These findings highlight the involvement of HD-Zip I AtHB7 and AtHB12, well-known regulators of development and abiotic stress responses, in biotic stress responses in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Leucine Zippers , Arabidopsis Proteins/metabolism , DNA-Binding Proteins/metabolism , Plant Leaves/metabolism , Gene Expression Regulation, Plant , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism
2.
Int J Mol Sci ; 23(12)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35742916

ABSTRACT

Cytosine methylation within the 5'-C-phosphate-G-3' sequence of nucleotides (called CpG methylation) is a well-known epigenetic modification of genomic DNA that plays an important role in gene expression and development. CpG methylation is likely to be altered in the CpG islands. CpG islands are rich in cytosine, forming a structure called the i-motif via cytosine-cytosine hydrogen bonding. However, little is known about the effect of CpG methylation on the i-motif. In this study, The CpG methylation-induced structural changes on the i-motif was examined by thermal stability, circular dichroism (CD) spectroscopy, and native-polyacrylamide gel electrophoresis (Native-PAGE) evaluation of five i-motif-forming DNAs from four cancer-related genes (VEGF, C-KIT, BCL2, and HRAS). This research shows that CpG methylation increased the transitional pH of several i-motif-forming DNAs and their thermal stability. When examining the effect of CpG methylation on the i-motif in the presence of opposite G4-forming DNAs, CpG methylation influenced the proportion of G4 and i-motif formation. This study showed that CpG methylation altered the stability and structure of the i-motif in CpG islands.


Subject(s)
Cytosine , G-Quadruplexes , CpG Islands , Cytosine/metabolism , DNA/chemistry , DNA Methylation , Epigenesis, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...