Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
World J Oncol ; 3(1): 33-36, 2012 Feb.
Article in English | MEDLINE | ID: mdl-29147275

ABSTRACT

The optimal second-line chemotherapeutic regimen for thymic carcinoma remains uncertain and predictive factors for the response have not been identified. We encountered two cases of relapsed thymic carcinoma with recurrence 1.5 and 8 years after initial response to cisplatin/doxorubicin/vincristine/cyclophosphamide (ADOC) chemotherapy. Both cases were successfully retreated with ADOC. Our observations suggest that relapsed thymic carcinoma occurring a long treatment-free time from the initial response may be sensitive to the previous chemotherapy. We described two cases of relapsed thymic carcinoma successfully retreated with ADOC chemotherapy. Both patients had partial response to initial ADOC and long disease free times.

2.
Case Rep Oncol ; 2(2): 84-91, 2009 May 15.
Article in English | MEDLINE | ID: mdl-20740168

ABSTRACT

The optimal chemotherapeutic regimen for cancer of unknown primary (CUP) remains uncertain. We encountered 3 cases with CUP who presented with thoracic lymph node metastasis. Detailed physical examination and diagnostic tests, including laboratory investigations, bronchoscopy, upper and lower gastrointestinal studies, computed tomography of the head, neck, abdomen and pelvis and (18)F-fluorodeoxyglucose positron emission tomography, failed to identify the primary site in these cases. The patients were treated with the cisplatin plus docetaxel chemotherapy regimen. Concomitant thoracic radiotherapy was conducted in one patient and surgical resection in another. All patients showed good response to the chemotherapy and achieved long-term disease-free survival.

3.
J Mass Spectrom ; 41(9): 1226-31, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16924595

ABSTRACT

The mechanism of dissociation of neutral methyl stearate and its hydrogen atom adduct was investigated by charge inversion mass spectrometry using an alkali metal target. Migrations of functional groups in fatty acid ester ions are often observed during the dissociation of the cations in collisionally activated dissociation (CAD). In the charge inversion spectrum, the main dissociation channels of methyl stearate molecule are the loss of a CH3 radical or a H atom. To identify the source of the CH3 radical and the H atom, the charge inversion spectra of partially deuterated methyl stearate (C17H35COOCD3) were measured. The loss of CH3 occurred through elimination from the methoxy methyl group and that of H occurred through elimination from the hydrocarbon chain of the fatty acid group. In the protonated ester, a simultaneous loss of CH3 (from the methoxy methyl group) and a H atom or a H2 molecule was observed. The charge inversion process gave the dissociation fragments with almost no migration of atoms. Only a few peaks that were structure sensitive were observed in the higher mass region in the charge inversion spectra; these peaks were associated with dissociations of energy-selected neutral species, unlike the case of CAD spectra in which they result from dissociation of ions. Charge inversion mass spectrometry with alkali metal targets provided direct information on the dissociation mechanism of methyl stearate and its hydrogen atom adduct without any migration of functional groups.


Subject(s)
Hydrogen/chemistry , Stearates/chemistry , Electrons , Ions , Mass Spectrometry , Metals/chemistry
4.
J Chem Phys ; 124(22): 224320, 2006 Jun 14.
Article in English | MEDLINE | ID: mdl-16784287

ABSTRACT

Doubly charged tungsten hexacarbonyl W(CO)(6) (2+) ions were made to collide with Ar and K targets to give singly and doubly charged positive ions by collision-induced dissociation (CID). The resulting ions were analyzed and detected by using a spherical electrostatic analyzer. Whereas the doubly charged fragment ions resulting from collisional activation (CA) were dominant with the Ar target, singly charged fragment ions resulting from electron transfer were dominant with the K target. The internal energy deposition in collisionally activated dissociation (CAD) evaluated with the Ar target was broad and decreased with increasing internal energy. The predominant peaks observed with the K target were associated with singly charged W(CO)(2) (+) and W(CO)(3) (+) ions: these ions were not the result of CA, but arose from dissociation induced by electron transfer (DIET). The internal energy deposition resulting from the electron transfer was very narrow and centered at a particular energy, 7.8 eV below the energy level of the W(CO)(6) (2+) ion. This narrow internal energy distribution was explained in terms of electron transfer by Landau-Zener potential crossing at a separation of 5.9 x 10(-8) cm between a W(CO)(6) (2+) ion and a K atom, and the coulombic repulsion between singly charged ions in the exit channel. A large cross section of 1.1 x 10(-14) cm(2) was estimated for electron capture of the doubly charged W(CO)(6) (2+) ion from the alkali metal target, whose ionization energy is very low. The term "collision-induced dissociation," taken literally, includes all dissociation processes induced by collision, and therefore encompasses both CAD and DIET processes in the present work. Although the terms CID and CAD have been defined similarly, we would like to propose that they should not be used interchangeably, on the basis that there are differences in the observed ions and in their intensities with Ar and K targets.

SELECTION OF CITATIONS
SEARCH DETAIL
...