Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Insect Biochem Mol Biol ; 79: 97-107, 2016 12.
Article in English | MEDLINE | ID: mdl-28327305

ABSTRACT

Recent advances in genome-wide surveys have revealed a number of lepidopteran insect homologs of mammalian and Drosophila genes that are responsible for apoptosis regulation. However, the underlying molecular mechanisms for apoptosis regulation in lepidopteran insect cells remain poorly understood. In the present study, we demonstrated that the transfection of Bombyx mori BM-N cells with dsRNA against the B. mori cellular iap1 gene (cbm-iap1) induces severe apoptosis that is accompanied by an increase of caspase-3-like protease activity. In these apoptotic cells, the cleaved form of the endogenous initiator caspase Dronc (Bm-Dronc) was detected, indicating that cBm-IAP1 protein depletion by RNAi silencing resulted in the activation of Bm-Dronc. In transient expression assays in BM-N cells, cBm-IAP1 suppressed the apoptosis triggered by Bm-Dronc overexpression and depressed the elevation of caspase-3-like protease activity, but also increased the cleaved form of Bm-Dronc protein. cBm-IAP1 also suppressed the caspase-3-like protease activity stimulated by Bm-caspase-1 overexpression. Co-immunoprecipitation experiments demonstrated that cBm-IAP1 strongly interacts with Bm-Dronc, but only has weak affinity for Bm-caspase-1. Transient expression analyses showed that truncated cBm-IAP1 proteins defective in the BIR1, BIR2 or RING domain were unable to suppress Bm-Dronc-induced apoptosis. In addition, BM-N cells expressing truncated cBm-IAP1 proteins underwent apoptosis, suggesting that intact cBm-IAP1, which has anti-apoptotic activity, was replaced or displaced by the overexpressed truncated cBm-IAP1 proteins, which are incapable of interfering with the apoptotic caspase cascade. Taken together, the present results demonstrate that cBm-IAP1 is a vital negative regulator of apoptosis in BM-N cells and functions by preventing the activation and/or activity of Bm-Dronc and Bm-caspase-1.


Subject(s)
Apoptosis/genetics , Bombyx/physiology , Caspases/genetics , Inhibitor of Apoptosis Proteins/genetics , Insect Proteins/genetics , Animals , Bombyx/genetics , Caspases/metabolism , Inhibitor of Apoptosis Proteins/metabolism , Insect Proteins/metabolism
2.
J Virol ; 87(23): 12925-34, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24067961

ABSTRACT

We previously identified a novel baculovirus-encoded apoptosis suppressor, Apsup, from the baculovirus Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV). Apsup inhibits the apoptosis of L. dispar Ld652Y cells triggered by infection with p35-defective Autographa californica MNPV (vAcΔp35) and exposure to actinomycin D or UV light. Here, we examined the functional role of Apsup in apoptosis regulation in insect cells. Apsup prevented apoptosis and the proteolytic processing of L. dispar initiator caspase Dronc (Ld-Dronc) in Ld652Y cells triggered by overexpression of Ld-Dronc, LdMNPV inhibitor-of-apoptosis 3 (IAP3), or Hyphantria cunea MNPV IAP1. In vAcΔp35-infected apoptotic Ld652Y cells, Apsup restricted apoptosis induction and prevented processing of endogenous Ld-Dronc. Conversely, upon RNA interference (RNAi)-mediated silencing of apsup, LdMNPV-infected Ld652Y cells, which typically support high-titer virus replication, underwent apoptosis, accompanied by the processing of endogenous Ld-Dronc. Furthermore, endogenous Ld-Dronc coimmunoprecipitated with transiently expressed Apsup, indicating that Apsup physically interacts with Ld-Dronc. Apsup prevented the apoptosis of Sf9 cells triggered by vAcΔp35 infection but did not inhibit apoptosis or activation of caspase-3-like protease in vAcΔp35-infected Drosophila melanogaster S2 cells. Apsup also inhibited the proteolytic processing of L. dispar effector caspase Ld-caspase-1 in the transient expression assay but did not physically interact with Ld-caspase-1. These results demonstrate that Apsup inhibits apoptosis in Ld652Y cells by preventing the proteolytic processing of Ld-Dronc. Together with our previous findings showing that Apsup prevents the processing of both overexpressed Ld-Dronc and Bombyx mori Dronc, these results also demonstrate that Apsup functions as an effective apoptotic suppressor in various lepidopteran, but not dipteran, insect cells.


Subject(s)
Apoptosis , Caspases/metabolism , Inhibitor of Apoptosis Proteins/metabolism , Insect Proteins/metabolism , Moths/cytology , Moths/enzymology , Nucleopolyhedroviruses/metabolism , Viral Proteins/metabolism , Animals , Cell Line , Down-Regulation , Inhibitor of Apoptosis Proteins/genetics , Moths/virology , Nucleopolyhedroviruses/genetics , Protein Binding , Proteolysis , Viral Proteins/genetics
3.
Biochem Biophys Res Commun ; 436(2): 331-7, 2013 Jun 28.
Article in English | MEDLINE | ID: mdl-23743202

ABSTRACT

Ld652Y cells from the gypsy moth, Lymantria dispar, are extremely sensitive to various apoptotic stimuli, whereas BM-N cells from the silkworm, Bombyx mori, are relatively resistant to apoptotic stimuli. We previously cloned and characterized a B. mori homologue (bm-dronc) of Drosophila melanogaster dronc. In the present study, we cloned and characterized an L. dispar homologue of dronc (ld-dronc) comparatively with Bm-Dronc. The open reading frame of ld-dronc consisted of 1329bp that was predicted to encode a 443 amino-acid polypeptide with a molecular mass of 50,706Da and 54-57% amino acid sequence identity with Dronc homologues from other lepidopteran insects identified to date. Ld-Dronc had a long prodomain, large p20 domain, and small p10 domain, and a catalytic site composed of (308)QTCRG(312), which was distinct from the sites QACRG in Bm-Dronc and QMCRG in Dronc homologues of several other lepidopteran insects. Transiently expressed Ld-Dronc underwent proteolytic processing in the lepidopteran cell lines L. dispar Ld652Y, Spodoptera frugiperda Sf9, and B. mori BM-N, and dipteran D. melanogaster S2, but only triggered apoptosis in the lepidopteran cell lines. Endogenous Ld-Dronc underwent processing in Ld652Y cells upon infection with vAcΔp35, but not in mock-infected Ld652Y cells, supporting the involvement of Ld-Dronc in apoptosis induction. In vAcΔp35-infected apoptotic cells, Ld-Dronc underwent proteolytic processing more rapidly and extensively than Bm-Dronc. Similar results were obtained for Ld-Dronc and Bm-Dronc expressed transiently in S2, Ld652Y, Sf9, and BM-N cells. Taken together, these findings suggest that the intrinsic properties of Dronc proteinsare responsible, at least in part, for the differing sensitivity of Ld652Y and BM-N to apoptosis induction upon NPV infection.


Subject(s)
Apoptosis/genetics , Caspases, Initiator/genetics , Insect Proteins/genetics , Moths/genetics , Amino Acid Sequence , Animals , Bombyx/cytology , Bombyx/genetics , Bombyx/virology , Caspases, Initiator/metabolism , Cell Line , Cloning, Molecular , Drosophila melanogaster/cytology , Drosophila melanogaster/genetics , Drosophila melanogaster/virology , Host-Pathogen Interactions , Immunoblotting , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Insect Proteins/metabolism , Molecular Sequence Data , Moths/cytology , Moths/virology , Nucleopolyhedroviruses/genetics , Nucleopolyhedroviruses/metabolism , Nucleopolyhedroviruses/physiology , Sequence Homology, Amino Acid , Sf9 Cells , Spodoptera/cytology , Spodoptera/genetics , Spodoptera/virology , Transfection , Viral Proteins/genetics , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL