Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 5(43): 28108-28115, 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33163793

ABSTRACT

We report a precise measurement of the sensor behavior of the field effect transistor (FET) formed with the MoS2 channel when the channel part is exposed to Cl2 gas. The gas exposure and the electrical measurement of the MoS2 FET were executed with in situ ultrahigh-vacuum (UHV) conditions in which the surface analysis techniques were equipped. This makes it possible to detect how much sensitivity the MoS2 FET can provide and understand the surface properties. With the Cl2 gas exposure to the channel, the plot of the drain current versus the gate voltage (I d-V g curve) shifts monotonically toward the positive direction of V g, suggesting that the adsorbate acts as an electron acceptor. The I d-V g shifts are numerically estimated by measuring the onset of I d (threshold voltage, V th) and the mobility as a function of the dosing amounts of the Cl2 gas. The behaviors of both the V th shift and the mobility with the Cl2 dosing amount can be fitted with the Langmuir adsorption kinetics, which is typically seen in the uptake curve of molecule adsorption onto well-defined surfaces. This can be accounted for by a model where an impinging molecule occupies an empty site with a certain probability, and each adsorbate receives a certain amount of negative charge from the MoS2 surface up to the monolayer coverage. The charge transfer makes the V th shifts. In addition, the mobility is reduced by the enhancement of the Coulomb scattering for the electron flow in the MoS2 channel by the accumulated charge. From the thermal desorption spectroscopy (TDS) measurement and density functional theory (DFT) calculations, we concluded that the adsorbate that is responsible for the change of the FET property is the Cl atom that is dissociated from the Cl2 molecule. The monotonic shift of V th with the coverage suggests that the MoS2 device sensor has a good sensitivity to detect 10-3 monolayers (ML) of adsorption corresponding to the ppb level sensor with an activation time of 1 s.

2.
Sci Rep ; 8(1): 14709, 2018 Oct 02.
Article in English | MEDLINE | ID: mdl-30279552

ABSTRACT

One of the most important achievements in the field of spintronics is the development of magnetic tunnel junctions (MTJs). MTJs exhibit a large tunneling magnetoresistance (TMR). However, TMR is strongly dependent on biasing voltage, generally, decreasing with applying bias. The rapid decay of TMR was a major deficiency of MTJs. Here we report a new phenomenon at room temperature, in which the tunneling magnetocapacitance (TMC) increases with biasing voltage in an MTJ system based on Co40Fe40B20/MgO/Co40Fe40B20. We have observed a maximum TMC value of 102% under appropriate biasing, which is the largest voltage-induced TMC effect ever reported for MTJs. We have found excellent agreement between theory and experiment for the bipolar biasing regions using Debye-Fröhlich model combined with quartic barrier approximation and spin-dependent drift-diffusion model. Based on our calculation, we predict that the voltage-induced TMC ratio could reach 1100% in MTJs with a corresponding TMR value of 604%. Our work has provided a new understanding on the voltage-induced AC spin-dependent transport in MTJs. The results reported here may open a novel pathway for spintronics applications, e.g., non-volatile memories and spin logic circuits.

3.
Sci Rep ; 7(1): 2682, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28572572

ABSTRACT

Magnetocapacitance (MC) effect, observed in a wide range of materials and devices, such as multiferroic materials and spintronic devices, has received considerable attention due to its interesting physical properties and practical applications. A normal MC effect exhibits a higher capacitance when spins in the electrodes are parallel to each other and a lower capacitance when spins are antiparallel. Here we report an inverse tunnel magnetocapacitance (TMC) effect for the first time in Fe/AlOx/Fe3O4 magnetic tunnel junctions (MTJs). The inverse TMC reaches up to 11.4% at room temperature and the robustness of spin polarization is revealed in the bias dependence of the inverse TMC. Excellent agreement between theory and experiment is achieved for the entire applied frequency range and the wide bipolar bias regions using Debye-Fröhlich model (combined with the Zhang formula and parabolic barrier approximation) and spin-dependent drift-diffusion model. Furthermore, our theoretical calculations predict that the inverse TMC effect could potentially reach 150% in MTJs with a positive and negative spin polarization of 65% and -42%, respectively. These theoretical and experimental findings provide a new insight into both static and dynamic spin-dependent transports. They will open up broader opportunities for device applications, such as magnetic logic circuits and multi-valued memory devices.

4.
Phys Rev Lett ; 109(23): 237209, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23368262

ABSTRACT

We have studied the switching behavior of a single Co/Pt multilayer dot under the assistance of rf fields. The switching field monotonically decreases with increasing rf frequency up to a critical frequency. It is found that the reduction of the switching field is more significant than the theoretical prediction based on the single macrospin model. In addition, switching field distribution due to thermal fluctuation is also considerably suppressed. The simulation has revealed that these drastic changes are caused by excitation of large amplitude spin waves in the dot.

5.
Chem Commun (Camb) ; (19): 2215-7, 2008 May 21.
Article in English | MEDLINE | ID: mdl-18463744

ABSTRACT

Water-dispersible and magneto-responsive carbon nano test tubes with a controlled length (1.3 microm) and diameter (35 nm) were synthesized by using the nanochannels of anodic aluminium oxide as a template.

SELECTION OF CITATIONS
SEARCH DETAIL
...