Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-17544320

ABSTRACT

The amino-imino tautomerization of the 4-aminopyrimidine (4APM)/acetic acid (AcOH) system through dual hydrogen bonding in n-hexane at room temperature was investigated using UV absorption and fluorescence spectroscopies, fluorescence time-profile measurements, and molecular orbital calculations, with those of the imino-model compound of 3-methyl-4(1H)-pyrimidinimine (3M4PMI). From the experimental results, it was confirmed that the imino-tautomer was formed in the first excited singlet state (S1) state through the double-proton transfer of the dual hydrogen-bonded complex of 4APM with AcOH. The fluorescences of the free 4APM monomer (band maximum at 353nm), imino-tautomer (at 414nm), and 3M4PMI monomer (at 437nm) exhibit the single-exponential decays of 98, 73, and 19ps time constants, respectively. The shorter decay time of the imino-tautomer fluorescence compared with the free monomer one is suggestive of the low activation energy process in the S1 state. From the result of the shortest decay time of the 3M4PMI fluorescence, it can be deduced that 3M4PMI has a non-planar structure in the S1 state. The theoretical calculations on the S0 and S1 state double-proton transfer for the 4APM/AcOH dual hydrogen-bonded system were performed with the use of formic acid (FoOH) in place of AcOH for the sake of simplicity. Only one peak of transition state was resolved in the S0 and S1 states. The energy barrier for the S1 state double-proton transfer of the 4APM/FoOH complex-->3H-4(1H)-pyrimidinimine/FoOH tautomer was estimated to be approximately 2kJmol(-1) using the CIS/6-31G(d) methods. On the other hand, the energy barrier for the S0 state reverse proton transfer of the 3H-4(1H)-pyrimidinimine/FoOH tautomer-->4APM/FoOH complex was estimated to be almost zero kJmol(-1) at B3LYP/6-31G(d) level.


Subject(s)
Acetates/chemistry , Amines/chemistry , Imines/chemistry , Pyrimidines/chemistry , Molecular Structure , Spectrophotometry , Stereoisomerism , Surface Properties , Thermodynamics , Time Factors
2.
Article in English | MEDLINE | ID: mdl-17336582

ABSTRACT

The hydrogen bonding and amino-imino tautomerization of the systems of 2-amino-3-methoxypyridine (2A3MOP), 2-amino-6-methoxypyridine (2A6MOP), 2-amino-6-n-propoxypyridine (2A6NPOP), 2-amino-6-iso-propoxypyridine(2A6IPOP), 2-amino-4-methoxypyrimidine (2A4MOPM), 4-amino-2-methoxypyrimidine (4A2OPM), 4-amino-6-methoxypyrimidine (4A6MOPM), 2-amino-4-methoxy-6-methylpyrimidine (MMPM), and 2-amino-4,6-dimethoxypyrimidine (DMOPM), with acetic acid (AcOH) in n-hexane at room temperature were investigated by means of the UV absorption and fluorescence spectroscopy. From the UV absorption spectra the presence of the dual hydrogen-bonded complexes that linked by a 1:1 molar ratio with AcOH were found, since the enthalpy changes accompanying the hydrogen bond formation between 2A3MOP, 2A4MOPM, 4A2MOPM, 4A6MOPM, or MMPM, and AcOH were ca. 42.8-61.1kJmol(-1) in n-hexane. The fluorescence spectra of the 2A3MOP/AcOH, 2A4MOPM/AcOH, 4A6MOPM/AcOH, and MMPM/ AcOH systems revealed that the imino-tautomers were produced through double proton transfer in the amino hydrogen-bonded 1:1 complexes in the S1 state, but the imino-tautomer formation for the 4A2MOPM/AcOH system was not found on account of the steric hindrance due to the inversion of the methoxy group in the S1 state. The imino-tautomer for the MMPM/AcOH system fluoresces most intensely among these systems investigated. On the other hand, not only the formation of the corresponding amino dual hydrogen-bonded complex and but also that of imino-tautomer were prevented for the 2A6MOP/AcOH, 2A6NPOPM/AcOH, 2A6IPOP/AcOH, and DMOPM/AcOH systems, because of the steric hindrance of the methoxy group in both the S0 and S1 states. The theoretical approaches by an ab initio molecular orbital calculation were in accord with the experimental results.


Subject(s)
Acetic Acid/chemistry , Alcohols/chemistry , Amines/chemistry , Aminopyridines/chemistry , Imines/chemistry , Pyrimidines/chemistry , Hydrogen Bonding , Isomerism , Molecular Conformation , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Temperature , Thermodynamics
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 62(4-5): 1157-64, 2005 Dec.
Article in English | MEDLINE | ID: mdl-15978861

ABSTRACT

The electronic absorption and fluorescence spectra of 2-aminopyrimidine (2APM), 2-amino-4-methylpyrimidine (2A4MPM), and 2-amino-4,6-dimethylpyrimidine (2ADMPM) with acetic acid (AcOH) were measured in isooctane (2,2,4-trimethylpentane) at room temperature. From the absorption spectra, a hydrogen-bonded complex formation of the 2APM/AcOH, 2A4MPM/AcOH, and 2ADMPM/AcOH systems was recognized in isooctane. The enthalpy changes (-DeltaH) for the complex formation were estimated to be ca. 41.2-45.1 kJ mol-1 and increased in proportion to the numbers of the methyl group introduced into the 2APM. The -DeltaH values refer to the formation of the hydrogen-bonded 1:1 complex between the ring nitrogen atom and NH2 group of the aminopyrimidine and the OH and CO groups of AcOH, respectively. In the 2A4MPM/AcOH double hydrogen-bonded complex the OH group of AcOH is thought to be linked to the ring nitrogen at the 1-postion of 2A4MPM. The fluorescence spectral results indicate that the double proton transfer reaction takes place during the excited state, and gives rise to an imino-tautomer vibration emission, from analogy with the fluorescences of 1-methyl-2(1H)-pyrimidinimine (MPMI), 1,4-dimethyl-2(1H)-pyrimidinimine (DMPMI), and 1,4,6-trimethyl-2(1H)-pyrimidinimine (TMPMI). The fluorescence quantum yields of the imino-tautomers also increased in proportion to the numbers of the methyl group introduced into the 2APM.


Subject(s)
Acetates/chemistry , Pyrimidines/chemistry , Pyrimidines/radiation effects , Isomerism , Methylation , Molecular Structure , Photochemistry , Quantum Theory , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...