Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Zoolog Sci ; 40(5): 348-359, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37818883

ABSTRACT

In most vertebrates, the oviducts and sperm ducts are derived from the Müllerian ducts and Wolffian ducts, respectively. However, in teleosts, the genital ducts are formed by the posterior extension of gonads in both sexes. Whether the genital ducts of teleosts are newly evolved organs or variants of Müllerian ducts is an important question for understanding evolutionary mechanisms of morphogenesis. One of the genes essential for Müllerian duct formation in mice is Wnt4, which is expressed in the mesenchyme and induces invagination of the coelomic epithelium and its posterior elongation. Here, we addressed the above question by examining genital duct development in mutants of two Wnt4 genes in the medaka (wnt4a is orthologous to mouse Wnt4, and wnt4b is paralogous). The wnt4b mutants had a short body but were fertile with normal genital ducts. In contrast, both male and female wnt4a mutants had their posterior elongation of the gonads stopped within or just outside the coelom. The mutants retained the posterior parts of ovarian cavities or sperm duct primordia, which are potential target tissues of Wnt4a. The gonads of female scl mutants (unable to synthesize sex steroids) lacked these tissues and did not develop genital ducts. Medaka wnt4a was expressed in the mesenchyme ventral to the genital ducts in both sexes. Taken together, the data strongly suggest that the mouse Müllerian ducts and the medaka genital ducts share homologous developmental processes. Additionally, the wnt4a or wnt4b single mutants and the double mutants did not show sex-reversal, implying that both genes are dispensable for gonadal sex differentiation in the medaka.


Subject(s)
Oryzias , Male , Female , Animals , Mice , Oryzias/genetics , Sex Differentiation/genetics , Semen , Gonads , Genitalia
2.
Biochemistry ; 54(6): 1371-9, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25629582

ABSTRACT

The solvent environment regulates the conformational dynamics and functions of solvated proteins. In cell membranes, cholesterol, a major eukaryotic lipid, can markedly modulate protein dynamics. To investigate the nonspecific effects of cholesterol on the dynamics and stability of helical membrane proteins, we monitored association-dissociation dynamics on the antiparallel dimer formation of two simple transmembrane helices (AALALAA)3 with single-molecule fluorescence resonance energy transfer (FRET) using Cy3B- and Cy5-labeled helices in lipid vesicles (time resolution of 17 ms). The incorporation of 30 mol % cholesterol into phosphatidylcholine bilayers significantly stabilized the helix dimer with average lifetimes of 450-170 ms in 20-35 °C. Ensemble FRET measurements performed at 15-55 °C confirmed the cholesterol-induced stabilization of the dimer (at 25 °C, ΔΔG(a) = -9 kJ mol(-1) and ΔΔHa = -60 kJ mol(-1)), most of which originated from "lipophobic" interactions by reducing helix-lipid contacts and the lateral pressure in the hydrocarbon core region. The temperature dependence of the dissociation process (activation energy of 48 kJ) was explained by the Kramers-type frictional barrier in membranes without assuming an enthalpically unfavorable transition state. In addition to these observations, cholesterol-induced tilting of the helices, a positive ΔC(p(a)), and slower dimer formation compared with the random collision rate were consistent with a hypothetical model in which cholesterol stabilizes the helix dimer into an hourglass shape to relieve the lateral pressure. Thus, the liposomal single-molecule approach highlighted the significance of the cholesterol-induced basal force for interhelical interactions, which will aid discussions of complex protein-membrane systems.


Subject(s)
Cholesterol/chemistry , Membrane Proteins/chemistry , Fluorescence Resonance Energy Transfer , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...