Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Sci ; 99(5): 423-37, 2005.
Article in English | MEDLINE | ID: mdl-16493184

ABSTRACT

To construct a non-clinical database for drug-induced QT interval prolongation, the electrophysiological effects of 11 positive and 10 negative compounds on action potentials (AP) in guinea-pig papillary muscles were investigated in a multi-site study according to a standard protocol. Compounds with a selective inhibitory effect on the rapidly activated delayed rectifier potassium current (IKr) prolonged action potential duration at 90% repolarization (APD90) in a concentration-dependent manner, those showing Ca2+ current (ICa) inhibition shortened APD30, and those showing Na+ current (INa) inhibition decreased action potential amplitude (APA) and Vmax. Some of the mixed ion-channel blockers showed a bell-shaped concentration-response curve for APD90, probably due to their blockade of INa and/or ICa, sometimes leading to a false-negative result in the assay. In contrast, all positive compounds except for terfenadine and all negative compounds with IKr-blocking activity prolonged APD30-90 regardless of their INa- and/or ICa-blocking activities, suggesting that APD30-90 is a useful parameter for evaluating the IKr-blocking activity of test compounds. Furthermore, the assay is highly informative regarding the modulation of cardiac ion channels by test compounds. Therefore, when APD90 and APD30-90 are both measured, the action potential assay can be considered a useful method for assessing the risk of QT interval prolongation in humans in non-clinical safety pharmacology studies.


Subject(s)
Action Potentials/drug effects , Biological Assay , Long QT Syndrome/chemically induced , Papillary Muscles/drug effects , Animals , Databases, Factual , Guinea Pigs , In Vitro Techniques , Male , Papillary Muscles/physiology , Pharmaceutical Preparations
2.
J Pharmacol Sci ; 99(5): 439-47, 2005.
Article in English | MEDLINE | ID: mdl-16493185

ABSTRACT

Sixteen pharmaceutical companies and 6 contract research organizations in QT PRODACT acquired data on the action potentials in isolated guinea-pig papillary muscles using a standard protocol established by the QT PRODACT. Inter- and intra-facility variability for each of the parameters in the pre-application values and Delta% change after vehicle (0.1% DMSO) or dl-sotalol (30 micromol/L) treatment were examined using a nested model. Inter-facility variability of each of the parameters in the pre-application values were Vmax>APDs=APD30-90>APA=RMP (descending order). The inter-facility variability of all of the parameters was almost the same or was less as compared with the intra-facility variability. Inter-facility variability for the Delta% change for each parameter after dl-sotalol treatment showed a tendency similar to the results for the pre-application values. Comparing the inter- and the intra-facility variability, the inter-facility variation did not exceed the intra-facility variation. All facilities found that dl-sotalol prolonged APD. Therefore, it is suggested that the test system using this standard protocol is useful as a non-clinical evaluation system for QT prolongation. Moreover, the results are considered to be directly comparable between multiple facilities.


Subject(s)
Action Potentials/drug effects , Biological Assay , Long QT Syndrome/chemically induced , Papillary Muscles/drug effects , Sotalol/pharmacology , Animals , Anti-Arrhythmia Agents/pharmacology , Databases, Factual , Dimethyl Sulfoxide , Drug Industry , Guinea Pigs , In Vitro Techniques , Laboratories , Male , Papillary Muscles/physiology , Reproducibility of Results
3.
J Pharmacol Sci ; 99(5): 449-57, 2005.
Article in English | MEDLINE | ID: mdl-16493186

ABSTRACT

Certain compounds that prolong QT interval in humans have little or no effect on action-potential (AP) duration used traditionally, but they inhibit rapidly-activated-delayed-rectifier potassium currents (IKr) and/or human ether-a-go-go-related gene (hERG) currents. In this study using isolated guinea-pig papillary muscles, we investigated whether new parameters in AP assays can detect the inhibitory effects of various compounds on IKr and/or hERG currents with high sensitivity. The difference in AP duration between 60% and 30% repolarization, 90% and 60% repolarization, and 90% and 30% repolarization (APD30-60, APD60-90, and APD30-90, respectively) were calculated as the new parameters. All the 15 IKr and/or hERG current inhibitors that have been reported (9 compounds) or not reported (6 compounds) to inhibit calcium currents prolonged APD30-60, APD60-90, and/or APD30-90; and 8 of the 15 inhibitors prolonged APD30-60, APD60-90, and/or APD30-90 more potently than APD90. The APD30-60, APD60-90, and APD30-90 measurements revealed no difference in sensitivity when evaluating the effects of the IKr and/or hERG current inhibitors on the three parameters. On the other hand, compounds with little or no effect on hERG currents had no effect on APD30-60, APD60-90, or APD30-90. Therefore, it is concluded that in AP assays using isolated guinea-pig papillary muscles, APD30-60, APD60-90, and APD30-90 are useful indexes for evaluating the inhibitory effects of compounds including mixed ion-channel blockers on IKr and/or hERG currents.


Subject(s)
Action Potentials/drug effects , Calcium Channel Blockers/pharmacology , Long QT Syndrome/chemically induced , Papillary Muscles/drug effects , Potassium Channel Blockers/pharmacology , Animals , Databases, Factual , Delayed Rectifier Potassium Channels/antagonists & inhibitors , Delayed Rectifier Potassium Channels/physiology , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Ether-A-Go-Go Potassium Channels/physiology , Guinea Pigs , In Vitro Techniques , Male , Papillary Muscles/physiology
4.
J Pharmacol Sci ; 99(5): 487-500, 2005.
Article in English | MEDLINE | ID: mdl-16493189

ABSTRACT

In safety pharmacology studies, the effects on the QT interval of electrocardiograms are routinely assessed using a telemetry system in cynomolgus monkeys. However, there is a lack of integrated databases concerning in vivo QT assays in conscious monkeys. As part of QT Interval Prolongation: Project for Database Construction (QT PRODACT), the present study examined 10 positive compounds with the potential to prolong the QT interval and 6 negative compounds considered to have no such effect on humans. The experiments were conducted at 7 facilities in accordance with a standard protocol established by QT PRODACT. The vehicle or 3 doses of each test compound were administered orally to male cynomolgus monkeys (n=3-4), and telemetry signals were recorded for 24 h. None of the negative compounds prolonged the corrected QT using Bazett's formula (QTcB) interval. On the other hand, almost all of the positive compounds prolonged the QTcB interval, but haloperidol, terfenadine, and thioridazine did not. The failure to detect the QTcB interval prolongation appeared to be attributable for the differences in metabolism between species and/or disagreement with Bazett's formula for tachycardia. In the cynomolgus monkeys, astemizole induced Torsade de Pointes and cisapride caused tachyarrhythmia at lower plasma concentrations than those observed in humans and dogs. These results suggest that in vivo QT assays in conscious monkeys represent a useful model for assessing the risks of drug-induced QT interval prolongation.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Long QT Syndrome/chemically induced , Models, Animal , Animals , Arrhythmias, Cardiac/chemically induced , Circadian Rhythm , Databases, Factual , Electrocardiography , Macaca fascicularis , Male , Pharmaceutical Preparations/blood , Pharmacokinetics , Telemetry
SELECTION OF CITATIONS
SEARCH DETAIL
...