Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Food Sci Nutr ; 7(1): 312-321, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30680186

ABSTRACT

Skeletal muscle plays a critical role in locomotion and energy metabolism. Maintenance or enhancement of skeletal muscle mass contributes to the improvement of mobility and prevents the development of metabolic diseases. The extracts from Kaempferia parviflora rhizomes contain at least ten methoxyflavone derivatives that exhibit enhancing effects on ATP production and glucose uptake in skeletal muscle cells. In the present study, we investigated the effects of ten K. parviflora-derived methoxyflavone derivatives (six 5,7-dimethoxyflavone (DMF) derivatives and four 5-hydroxy-7-methoxyflavone (HMF) derivatives) on skeletal muscle hypertrophy. Murine C2C12 myotubes and senescence-accelerated mouse-prone 1 (SAMP1) mice treated with methoxyflavones were used as experimental models to determine the effects of HMF derivatives on myotube diameter and size and muscle mass. The four HMF derivatives, but not the six DMF derivatives, increased myotube diameter. The 5-hydroxyflavone, 7-methoxyflavone, and 5,7-dihydroxyflavone had no influence on myotube size, a result that differed from HMF. Dietary administration of the mixture composed of the four HMF derivatives resulted in increase in the soleus muscle size and mass in SAMP1 mice. HMF derivatives also promoted protein synthesis in myotubes, and treatment with the intracellular Ca2+ chelator BAPTA-AM, which depletes intracellular Ca2+ levels, inhibited this promotion. Furthermore, BAPTA-AM inhibited HMF-promoted protein synthesis even when myotubes were incubated in Ca2+-free medium. These results indicate that HMF derivatives induce myotube hypertrophy and that both the 5-hydroxyl group and the 7-methoxy group in the flavones are necessary for myotube hypertrophy. Furthermore, these results suggest that HMF-induced protein synthesis requires intracellular Ca2+, but not extracellular Ca2+.

2.
J Nutr Biochem ; 49: 63-70, 2017 11.
Article in English | MEDLINE | ID: mdl-28886438

ABSTRACT

Ubiquitin-specific protease 19 (USP19) is a key player in the negative regulation of muscle mass during muscle atrophy. Loss-of-function approaches demonstrate that 17ß-estradiol (E2) increases USP19 expression through estrogen receptor (ER) α and consequently decreases soleus muscle mass in young female mice under physiological conditions. Daidzein is one of the main isoflavones in soy, and activates ERß-dependent transcription. Here, we investigated the effects of daidzein on E2-increased USP19 expression and E2-decreased soleus muscle mass in young female mice. Daidzein stimulated the transcriptional activity of ERß in murine C2C12 cells and down-regulated USP19 expression. Consistently, daidzein inhibited E2-induced USP19 expression in a reporter activity using a functional half-estrogen response element (hERE) from Usp19. Daidzein inhibited E2-induced recruitment of ERα and promoted recruitment of ERß to the Usp19 hERE. Dietary daidzein down-regulated the expression of USP19 at the mRNA and protein levels and increased soleus muscle mass in female mice, but not in males. In soleus muscle from ovariectomized (OVX) female mice, dietary daidzein inhibited E2-increased USP19 mRNA expression and E2-decreased muscle mass. Furthermore, E2 induced the recruitment of ERα and ERß to the hERE, whereas daidzein inhibited E2-induced recruitment of ERα, and enhanced E2-increased recruitment of ERß, to the Usp19 hERE. These results demonstrate that dietary daidzein decreases USP19 mRNA expression through ERß and increases soleus muscle mass in young female mice, but not in male mice, under physiological conditions.


Subject(s)
Dietary Supplements , Estrogen Receptor beta/agonists , Isoflavones/therapeutic use , Muscle, Skeletal/metabolism , Phytoestrogens/therapeutic use , Sarcopenia/prevention & control , Ubiquitin-Specific Proteases/antagonists & inhibitors , Active Transport, Cell Nucleus , Animals , Animals, Outbred Strains , Cell Line , Endopeptidases , Enzyme Repression , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Female , Genes, Reporter , Male , Mice , Muscle, Skeletal/enzymology , Muscle, Skeletal/pathology , Myoblasts, Skeletal/cytology , Myoblasts, Skeletal/enzymology , Myoblasts, Skeletal/metabolism , Myoblasts, Skeletal/pathology , Ovariectomy/adverse effects , Random Allocation , Response Elements , Sarcopenia/etiology , Sarcopenia/metabolism , Sarcopenia/pathology , Sex Characteristics , Signal Transduction , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism
3.
Biochem Biophys Res Commun ; 478(3): 1292-7, 2016 09 23.
Article in English | MEDLINE | ID: mdl-27553280

ABSTRACT

The majority of studies on possible roles for collagen hydrolysates in human health have focused on their effects on bone and skin. Hydroxyprolyl-glycine (Hyp-Gly) was recently identified as a novel collagen hydrolysate-derived dipeptide in human blood. However, any possible health benefits of Hyp-Gly remain unclear. Here, we report the effects of Hyp-Gly on differentiation and hypertrophy of murine skeletal muscle C2C12 cells. Hyp-Gly increased the fusion index, the myotube size, and the expression of the myotube-specific myosin heavy chain (MyHC) and tropomyosin structural proteins. Hyp-Gly increased the phosphorylation of Akt, mTOR, and p70S6K in myoblasts, whereas the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 inhibited their phosphorylation by Hyp-Gly. LY294002 and the mammalian target of rapamycin (mTOR) inhibitor rapamycin repressed the enhancing effects of Hyp-Gly on MyHC and tropomyosin expression. The peptide/histidine transporter 1 (PHT1) was highly expressed in both myoblasts and myotubes, and co-administration of histidine inhibited Hyp-Gly-induced phosphorylation of p70S6K in myoblasts and myotubes. These results indicate that Hyp-Gly can induce myogenic differentiation and myotube hypertrophy and suggest that Hyp-Gly promotes myogenic differentiation by activating the PI3K/Akt/mTOR signaling pathway, perhaps depending on PHT1 for entry into cells.


Subject(s)
Cell Differentiation/drug effects , Collagen/pharmacology , Dipeptides/pharmacology , Muscle Fibers, Skeletal/pathology , Myoblasts/cytology , Animals , Cell Size/drug effects , Histidine/pharmacology , Hypertrophy , Male , Membrane Transport Proteins/metabolism , Mice , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Myoblasts/drug effects , Myoblasts/metabolism , Myosin Heavy Chains/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Tropomyosin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...