Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 15(9)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37765306

ABSTRACT

The intestinal epithelial Caco-2 cell monolayer is a well-established in vitro model useful for predicting intestinal drug absorption in humans. Coculture models of Caco-2 and goblet-cell-like HT29-MTX cells have been developed to overcome the lack of a mucus layer; however, those models are much leakier compared to the intestinal epithelium. Here, we developed a partially laminated culture model where HT29-MTX cells were superimposed onto a Caco-2 monolayer to overcome this issue. A morphological study showed that the piled HT29-MTX cells were voluntarily incorporated into the Caco-2 monolayer, and mucus production was confirmed via periodic acid-Schiff and mucin protein 2 staining. Permeability was evaluated in terms of transepithelial electrical resistance (TEER) and the apparent permeability of paracellular markers with different molecular sizes. The partially laminated model maintained the high barrier function of the Caco-2 monolayer, whose permeability appeared adjustable according to the HT29-MTX/Caco-2 cell ratio. In contrast, the coculture models showed abnormally high permeability of those markers, correlated with low TEER. Thus, the partially laminated model enabled in vitro recapitulation of effective mucosal barrier function. Consequently, this novel model may be useful as an in vitro high-throughput evaluation system for enteral mucosal permeability and mucus-penetrating efficiency of drugs and nanocarriers.

2.
Sensors (Basel) ; 23(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36772569

ABSTRACT

We propose a boron-rhodamine-containing carboxylic acid (BRhoC) substance as a new sugar chemosensor. BRhoC was obtained by the Friedel-Crafts reaction of 4-formylbenzoic acid and N,N-dimethylphenylboronic acid, followed by chloranil oxidation. In an aqueous buffer solution at pH 7.4, BRhoC exhibited an absorption maximum (Absmax) at 621 nm. Its molar absorption coefficient at Absmax was calculated to be 1.4 × 105 M-1 cm-1, and it exhibited an emission maximum (Emmax) at 644 nm for the excitation at 621 nm. The quantum yield of BRhoC in CH3OH was calculated to be 0.16. The borinate group of BRhoC reacted with a diol moiety of sugar to form a cyclic ester, which induced a change in the absorbance and fluorescence spectra. An increase in the D-fructose (Fru) concentration resulted in the red shift of the Absmax (621 nm without sugar and 637 nm with 100 mM Fru) and Emmax (644 nm without sugar and 658 nm with 100 mM Fru) peaks. From the curve fitting of the plots of the fluorescence intensity ratio at 644 nm and 658 nm, the binding constants (K) were determined to be 2.3 × 102 M-1 and 3.1 M-1 for Fru and D-glucose, respectively. The sugar-binding ability and presence of a carboxyl group render BRhoC a suitable building block for the fabrication of highly advanced chemosensors.

3.
J Nat Med ; 77(2): 306-314, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36635416

ABSTRACT

The genus Claviceps (Clavicipitaceae) is famous for producing ergot alkaloids (EAs) in sclerotia. EAs can cause ergotism, resulting in convulsions and necrosis when ingested, making these compounds a serious concern for food safety. Agroclavine (2), a typical Clavine-type EA, is a causative agent of ergotism and is listed as a compound to be monitored by the European Food Safety Authority. Clavine-type EAs are known to cause cytotoxicity, but the mechanism has not been elucidated. We performed annexin V and PI double-staining followed by flow cytometric analysis to detect apoptosis in HepG2 and PANC-1 cells after exposure to Clavine-type EAs. Clavine-type EAs reduced cell viability and induced apoptosis in both cell lines. We then performed LC-MS analysis of EAs from 41 sclerotia samples of Claviceps collected in Japan. 24 out of 41 sclerotia extracts include peptide-type EAs (ergosine/inine: 4/4', ergotamine: 5, ergocornine/inine: 6/6', α-ergocryptine/inine: 8/8', and ergocristine/inine: 9/9') and 19 sclerotia extracts among 24 sclerotia detected peptide type EAs include Clavine-type EAs (pyroclavine: 1, agroclavine: 2, festuclavine: 3) by LC-MS. We then performed a metabolomic analysis of the EAs in the sclerotia using principal component analysis (PCA). The PCA score plots calculated for EAs suggested the existence of four groups with different EA production patterns. One of the groups was formed by the contribution of Clavine-type EAs. These results suggest that Clavine-type EAs are a family of compounds requiring attention in food safety and livestock production in Japan.


Subject(s)
Claviceps , Ergot Alkaloids , Ergotism , Humans , Ergot Alkaloids/analysis , Ergot Alkaloids/chemistry , Japan , Claviceps/chemistry , Claviceps/metabolism , Peptides , Apoptosis
4.
Drug Metab Dispos ; 49(4): 337-343, 2021 04.
Article in English | MEDLINE | ID: mdl-33531413

ABSTRACT

Cannabidiol (CBD), a major component of cannabis, has various effects, such as antiemetic and anxiolytic activities, and has recently been marketed as a supplement. The number of people using CBD during pregnancy is increasing, and there are concerns about its effects on the fetus. In addition, the scientific evidence supporting the fetal safety of CBD use during pregnancy is insufficient. To investigate CBD transfer from the mother to the fetus, a single intravenous dose of CBD was administered to pregnant mice in this study, and fetal pharmacokinetics (distribution and elimination) was analyzed. The transfer of CBD from the maternal blood to the fetus was rapid, and the compound accumulated in the fetal brain, liver, and gastrointestinal tract. Conversely, little CBD was transferred from the mother to the amniotic fluid. We analyzed the pharmacokinetics of CBD using a two-compartment model and found that the maternal and fetal half-lives of CBD were approximately 5 and 2 hours, respectively. Furthermore, we performed a moment analysis of the pharmacokinetics of CBD, observing a mean residence time of less than 2 hours in both the mother and fetus. These results suggest that once-daily CBD intake during pregnancy is unlikely to result in CBD accumulation in the mother or fetus. SIGNIFICANCE STATEMENT: CBD is currently marketed as a supplement, and despite its increasing use during pregnancy, little information concerning its fetal effects has been reported. In the present study, CBD was administered to pregnant mice, and the pharmacokinetics in the fetus was investigated using a two-compartment model and moment analysis. The results of these analyses provide important information for estimating the risk to the fetus if CBD is mistakenly consumed during pregnancy.


Subject(s)
Cannabidiol/pharmacokinetics , Fetus/drug effects , Fetus/metabolism , Maternal-Fetal Exchange/drug effects , Pregnancy/blood , Pregnancy/drug effects , Animals , Anticonvulsants/pharmacokinetics , Female , Maternal-Fetal Exchange/physiology , Mice , Mice, Inbred ICR
5.
Commun Chem ; 4(1): 4, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-36697512

ABSTRACT

Octacalcium phosphate (OCP; Ca8(HPO4)2(PO4)4 ∙ 5H2O) is a precursor of hydroxyapatite found in human bones and teeth, and is among the inorganic substances critical for hard tissue formation and regeneration in the human body. OCP has a layered structure and can incorporate carboxylate ions into its interlayers. However, studies involving the incorporation of tetracarboxylic and multivalent (pentavalent and above) carboxylic acids into OCP have not yet been reported. In this study, we investigate the incorporation of pyromellitic acid (1,2,4,5-benzenetetracarboxylic acid), a type of tetracarboxylic acid, into OCP. We established that pyromellitate ions could be incorporated into OCP by a wet chemical method using an acetate buffer solution containing pyromellitic acid. The derived OCP showed a brilliant blue emission under UV light owing to the incorporated pyromellitate ions. Incorporation of a carboxylic acid into OCP imparted new functions, which could enable the development of novel functional materials for biomedical applications.

6.
Plants (Basel) ; 9(10)2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32998352

ABSTRACT

Japanese larch (Larix kaempferi = L. leptolepis) is often characterized by its high growth rate with heterophyllous shoots, but the functional differences of heterophyllous shoots still remain unclear. Recently, abrupt high temperature and drought during spring induced high photosynthetic rate via change in leaf morphology of the deciduous habit. In order to reveal the photosynthetic characteristics of both short and long-shoot needles of sunny canopy of the larch trees using a canopy tower, we calculated the seasonal change of gas exchange characters and leaf mass per area (LMA) and foliar nitrogen content (N) of heterophyllous needles: short and long-shoot needles over 3 years. No marked difference in light-saturated photosynthetic rates (Psat) was observed between short and long shoots after leaf maturation to yellowing, although the difference was obvious in a specific year, which only shows that seasonal change in temperature and soil moisture determines the in situ photosynthetic capacity of needles. The large annual and seasonal variations in Psat in both shoots were found to be mainly determined by climatic variations, while shoot types determined the strategy of their photosynthetic N utilization as well as the stomatal regulation.

7.
Sci Rep ; 9(1): 14889, 2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31624360

ABSTRACT

The high density nucleation of α-Al2O3 nanocrystallites was observed by rapid heating of the aluminum formate hydroxide-based precursor powder at 1200 °C for 50 s. The nucleation of α-Al2O3 nanocrystallites with less 10 nm in size from high purity aluminum oxide matrix has not been observed to our knowledge. Based on the results of XRD and TEM, α-Al2O3 nanocrystallites nucleated from the amorphous phase which formed after thermal decomposition of the precursor powder. Subsequently, α-Al2O3 with hollow rod-like morphology formed through coalescence and growth of nanocrystallites after heating at 1200 °C for 1 min. The results obtained in this paper indicates a possible beneficial effect of the rapid heating and cooling of the aluminum formate hydroxide-based precursor powder on the precipitation of α-Al2O3 nanocrystallites.

8.
Int J Mol Sci ; 20(7)2019 Mar 28.
Article in English | MEDLINE | ID: mdl-30925715

ABSTRACT

Aquaporin-3 (AQP3) plays an important role in water transport in the gastrointestinal (GI) tract. In this study, we conducted a Caco-2 cell permeability assay to examine how changes in the expression and function of AQP3 affect the rate at which a drug is absorbed via passive transport in the GI tract. When the function of AQP3 was inhibited by mercuric chloride or phloretin, there was no change in warfarin permeability. In contrast, when the expression of AQP3 protein was decreased by prostaglandin E2 (PGE2) treatment, warfarin permeability increased to approximately twice the control level, and membrane fluidity increased by 15%. In addition, warfarin permeability increased to an extent comparable to that after PGE2 treatment when cell membrane fluidity was increased by 10% via boric acid/EDTA treatment. These findings suggest the possibility that the increased drug absorption under decreased AQP3 expression was attributable to increased membrane fluidity. The results of this study demonstrate that the rate of water transport has little effect on drug absorption. However, our findings also indicate that although AQP3 and other similar transmembrane proteins do not themselves transport drugs, changes in their expression levels can cause changes in cell membrane fluidity, thus affecting drug absorption rates.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anticoagulants/pharmacokinetics , Antipyrine/pharmacokinetics , Aquaporin 3/metabolism , Gastrointestinal Tract/metabolism , Intestinal Absorption , Warfarin/pharmacokinetics , Caco-2 Cells , Cell Membrane Permeability , Humans , Membrane Fluidity , Permeability
9.
Phys Chem Chem Phys ; 20(24): 16518-16527, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-29868670

ABSTRACT

The phase stability and Raman spectra of Yb2O3, Yb2SiO5 and Yb2Si2O7 under hydrostatic pressure are investigated using density functional theory calculations. The calculated energies of polymorphs of each compound show that the stable phases at zero pressure, viz., C-type Yb2O3, X2-Yb2SiO5 and ß-Yb2Si2O7, exhibit a pressure-induced phase transition as compressive pressure increases, which is consistent with available experimental data. The theoretical Raman spectra at zero pressure are in good agreement with experimental results for the stable phases and can be used to identify each polymorph. Although the calculated pressure dependence of Raman peak positions of C-type Yb2O3 is overestimated compared to available experimental data, piezospectroscopic coefficients extracted from Raman peaks of X2-Yb2SiO5 and ß-Yb2Si2O7 suggest that Raman spectroscopy can be used to measure stresses and strains in Yb silicates. Normal mode analyses reveal that characteristic Raman peaks of Yb silicates at frequencies above 600 cm-1 are strongly associated with vibrations of Si-O bonds in SixOy tetrahedral units.

10.
J Toxicol Sci ; 43(3): 223-227, 2018.
Article in English | MEDLINE | ID: mdl-29540656

ABSTRACT

The drug-metabolizing enzyme CYP3A is a heterogeneous enzyme found in the liver that displays local characteristics referred to as "zonation." Zonation contributes to improved energy efficiency in metabolism. The objective of this study was to determine a scientific basis for the safety of fetuses and nursing infants in cases in which the use of pharmaceuticals by pregnant and nursing mothers is unavoidable. In addition, we analyzed CYP3A zonation in the liver using mice from the fetus stage to the nursing stage. The livers of mice ranging from day 13.5 of the fetal stage to day 7 of the nursing stage were resected and immunostained using rabbit anti-rat CYP3A2 Ab, which can detect CYP3A11, CYP3A13, CYP3A16, CYP3A25, CYP3A41 and CYP3A44. The results indicated that zonation did not begin in the fetus stage up to day 3 of the nursing stage, and began on day 7 of infancy. This study revealed that changes in the metabolic activity of CYP3A in the liver between the fetal and nursing stages are partly related to zonation. Further studies are needed to establish standards for the proper use of pharmaceuticals by pregnant and nursing mothers.


Subject(s)
Animals, Newborn/metabolism , Cytochrome P-450 CYP3A/metabolism , Liver/enzymology , Maternal-Fetal Exchange , Aging , Animals , Energy Metabolism , Female , Fetus/enzymology , Mice, Inbred ICR , Pregnancy , Weaning
11.
J Nat Med ; 72(3): 607-614, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29550915

ABSTRACT

5,7-Dimethoxyflavone (5,7-DMF), one of the major components of Kaempferia parviflora, has anti-obesity, anti-inflammatory, and antineoplastic effects. On the other hand, in vitro studies have reported that it directly inhibits the drug metabolizing enzyme family cytochrome P450 (CYP) 3As. In this study, its safety was evaluated from a pharmacokinetic point of view, based on daily ingestion of 5,7-DMF. Midazolam, a substrate of CYP3As, was orally administered to mice treated with 5,7-DMF for 10 days, and its pharmacokinetic properties were investigated. In the group administered 5,7-DMF, the area under the curve (AUC) of midazolam increased by 130% and its biological half-life was extended by approximately 100 min compared to the control group. Compared to the control group, 5,7-DMF markedly decreased the expression of CYP3A11 and CYP3A25 in the liver. These results suggest that continued ingestion of 5,7-DMF decreases the expression of CYP3As in the liver, consequently increasing the blood concentrations of drugs metabolized by CYP3As.


Subject(s)
Flavonoids/therapeutic use , Midazolam/therapeutic use , Animals , Flavonoids/pharmacology , Humans , Male , Mice , Midazolam/pharmacokinetics
12.
J Toxicol Sci ; 43(1): 65-74, 2018.
Article in English | MEDLINE | ID: mdl-29415953

ABSTRACT

The use of midazolam in early stages of pregnancy has resulted in a high incidence of birth defects; however, the underlying reason is unknown. We investigated expression changes of the CYP3A molecular species and focused on its midazolam metabolizing activity from the foetal period to adulthood. CYP3A16 was the only CYP3A species found to be expressed in the liver during the foetal period. However, CYP3A11 is upregulated in adult mice, but has been found to be downregulated during the foetal period and to gradually increase after birth. When CYP3A16 expression was induced in a microsomal fraction of cells used to study midazolam metabolism by CYP3A16, its activity was suppressed. These results showed that the capacity to metabolize midazolam in the liver during the foetal period is very low, which could hence result in a high incidence of birth defects associated with the use of midazolam during early stages of pregnancy.


Subject(s)
Congenital Abnormalities/etiology , Cytochrome P-450 CYP3A/metabolism , Hypnotics and Sedatives/adverse effects , Hypnotics and Sedatives/metabolism , Midazolam/adverse effects , Midazolam/metabolism , Animals , Female , Humans , Liver/embryology , Liver/metabolism , Male , Mice, Inbred ICR , Pregnancy
13.
Sci Rep ; 8(1): 503, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29323155

ABSTRACT

As photoinhibition primarily reduces the photosynthetic light use efficiency at low light, sunfleck-induced photoinhibition might result in a fatal loss of carbon gain in the shade leaves within a canopy with barely positive carbon balance. We hypothesized that shade leaves at the lower canopy might retain a certain amount of leaf nitrogen (NL) to maintain energy consumption via electron transport, which contributes to circumventing photoinhibition during sunflecks to keep efficient utilization of low light during the rest period of daytime. We investigated excess energy production, a potential measure of susceptibility to photoinhibition, as a function of NL distribution within a Japanese oak canopy. Optimal NL distribution, which maximizes canopy carbon gain, may lead to a higher risk of photoinhibition in shade leaves during sunflecks. Conversely, uniform NL distribution would cause a higher risk of photoinhibition in sun leaves under the direct sunlight. Actual NL distribution equalized the risk of photoinhibition throughout the canopy indicated by the constant excess energy production at the highest light intensities that the leaves received. Such a homeostatic adjustment as a whole canopy concerning photoinhibition would be a key factor to explain why actual NL distribution does not maximize canopy carbon gain.

14.
Chem Commun (Camb) ; 53(48): 6524-6527, 2017 Jun 13.
Article in English | MEDLINE | ID: mdl-28573292

ABSTRACT

Enantioselectivity by octacalcium phosphate (OCP) is revealed through the incorporation of (S)-(-)-methylsuccinic acid (MeSuc) into its crystal lattice, with hardly any (R)-(+)-MeSuc incorporated. This phenomenon clearly indicates that OCP recognizes the steric structures of guest molecules, extending chiral recognition in inorganic materials to three-dimensional crystal growth.

15.
Biol Pharm Bull ; 39(12): 1955-1960, 2016.
Article in English | MEDLINE | ID: mdl-27904037

ABSTRACT

Cytochrome P450 enzymes (CYPs) are involved in the metabolism of various substances in the liver and small intestine and show markedly higher expression levels in the liver compared to other organs. The liver exhibits a remarkable capacity to regenerate. After excision of 70% of the liver, the organ can regenerate to its original size in approximately 1 week. Unlike the normal liver, in the injured liver, hepatic stem cells known as oval cells are considered to play an important role in regeneration. However, the role of CYPs in liver regeneration remains unclear. In the present study, we investigated the role of CYPs in the regeneration of injured liver. Liver injury was induced by 4-week repeated doses of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) in the diet. Next, both DDC-fed mice and control diet (containing no DDC)-fed mice were subjected to 70% hepatectomy, and the hepatic gene expression patterns measured during regeneration were analyzed. Mice with DDC-induced liver injury expressed the oval cell markers cytokeratin 19 (CK19) and epithelial cell adhesion molecule (EpCAM), and partial hepatectomy increased the expression levels of CYP2R1 and CYP26A1 as well as the hepatoblast marker alpha-fetoprotein (AFP) in these mice. The results of this study suggest that CYP2R1 and CYP26A1 are important in the differentiation of oval cells into hepatoblast-like cells in the injured liver.


Subject(s)
Chemical and Drug Induced Liver Injury/genetics , Cholestanetriol 26-Monooxygenase/genetics , Liver Regeneration/genetics , Liver/metabolism , Retinoic Acid 4-Hydroxylase/genetics , Animals , Cell Differentiation , Gene Expression , Hepatectomy , Mice , Pyridines
16.
Biol Pharm Bull ; 39(12): 2015-2021, 2016.
Article in English | MEDLINE | ID: mdl-27904043

ABSTRACT

The drug-metabolizing enzyme CYP is mainly involved in the metabolism of various substances in the liver, such as drugs, endogenous substances, and carcinogens. Recent reports have also revealed that CYP1B1 plays a major role in the developmental process. Because the level of CYP expression is markedly high in the liver, we hypothesize that CYP plays a role in the developmental process of the liver. To verify this hypothesis, we analyzed the expression patterns of various CYP molecular species and their functions during the differentiation of embryonic stem cells (ES cells) into hepatocytes and the developmental process in mice. The results demonstrated that CYP2R1 and CYP26A1 are expressed at an earlier stage of the differentiation of ES cells into hepatocytes than hepatoblast-specific markers. Additionally, during the development of the mouse liver, CYP2R1 and CYP26A1 were mostly up-regulated during the stage when hepatoblasts appeared. In addition, when CYP2R1 and CYP26A1 expressions were forced in ES cells and liver of adult mice, they differentiated into hepatoblast marker positive cells. These results suggest that CYP2R1 and CYP26A1 may play a major role in hepatoblast cell differentiation during the development of the liver.


Subject(s)
Cholestanetriol 26-Monooxygenase/metabolism , Liver/embryology , Liver/enzymology , Retinoic Acid 4-Hydroxylase/metabolism , Animals , Calcium-Binding Proteins , Cell Differentiation , Cholestanetriol 26-Monooxygenase/genetics , DNA , Embryonic Stem Cells/cytology , Embryonic Stem Cells/enzymology , Female , Hepatocytes/enzymology , Intercellular Signaling Peptides and Proteins/metabolism , Mice, Inbred ICR , Pharmaceutical Preparations/metabolism , Plasmids , Pregnancy , Retinoic Acid 4-Hydroxylase/genetics , Transfection
17.
Biol Pharm Bull ; 39(11): 1809-1814, 2016.
Article in English | MEDLINE | ID: mdl-27803452

ABSTRACT

Approximately 30% of patients with cancer pain experience concurrent neuropathic pain. Since these patients are not sufficiently responsive to morphine, the development of an effective method of pain relief is urgently needed. Decreased function of the µ opioid receptor, which binds to the active metabolite of morphine M-6-G in the brain, has been proposed as a mechanism for morphine resistance. Previously, we pharmacokinetically examined morphine resistance in mice with neuropathic pain, and demonstrated that the brain morphine concentration was decreased, expression level of P-glycoprotein (P-gp) in the small intestine was increased, and expression level and activity of uridine diphosphate glucuronosyltransferase (UGT)2B in the liver were increased. In order to clarify the mechanism of the increased expression of UGT2B, we examined the phase of neuropathic pain during which UGT2B expression in the liver begins to increase, and whether this increased expression is nuclear receptor-mediated. The results of this study revealed that the increased expression of UGT2B in the liver occurred during the maintenance phase of neuropathic pain, suggesting that it may be caused by transcriptional regulation which was not accompanied by increased nuclear import of pregnane X receptor (PXR).


Subject(s)
Glucuronosyltransferase/genetics , Liver/metabolism , Neuralgia/genetics , Animals , Constitutive Androstane Receptor , Cytochrome P-450 CYP3A/genetics , Hot Temperature , Male , Membrane Proteins/genetics , Mice, Inbred ICR , Pregnane X Receptor , RNA, Messenger/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Steroid/genetics , Sciatic Nerve/injuries
18.
Sci Rep ; 6: 32549, 2016 09 07.
Article in English | MEDLINE | ID: mdl-27601188

ABSTRACT

Ground-level ozone (O3) concentrations are expected to increase over the 21(st) century, especially in East Asia. However, the impact of O3 has not been directly assessed at the forest level in this region. We performed O3 flux-based risk assessments of carbon sequestration capacity in an old cool temperate deciduous forest, consisting of O3-sensitive Japanese beech (Fagus crenata), and in a warm temperate deciduous and evergreen forest dominated by O3-tolerant Konara oak (Quercus serrata) based on long-term CO2 flux observations. On the basis of a practical approach for a continuous estimation of canopy-level stomatal conductance (Gs), higher phytotoxic ozone dose above a threshold of 0 uptake (POD0) with higher Gs was observed in the beech forest than that in the oak forest. Light-saturated gross primary production, as a measure of carbon sequestration capacity of forest ecosystem, declined earlier in the late growth season with increasing POD0, suggesting an earlier autumn senescence, especially in the O3-sensitive beech forest, but not in the O3-tolerant oak forest.

19.
Eur J Pharm Sci ; 92: 298-304, 2016 Sep 20.
Article in English | MEDLINE | ID: mdl-27102159

ABSTRACT

The chronic administration of morphine to patients with neuropathic pain results in the development of a gradual tolerance to morphine. Although the detailed mechanism of this effect has not yet been elucidated, one of the known causes is a decrease in µ-opioid receptor function with regard to the active metabolite of morphine, M-6-G(morphine-6-glucuronide), in the ventrotegmental area of the midbrain. In this study, the relationship between the concentration of morphine in the brain and its analgesic effect was examined after the administration of morphine in the presence of neuropathic pain. Morphine was orally administered to mice with neuropathic pain, and the relationship between morphine's analgesic effect and its concentration in the brain was analysed. In addition, the expression levels of the conjugation enzyme, UGT2B (uridine diphosphate glucuronosyltransferase), which has morphine as its substrate, and P-gp, which is a transporter involved in morphine excretion, were examined. In mice with neuropathic pain, the concentration of morphine in the brain was significantly decreased, and a correlation was found between this decrease and the decrease in the analgesic effect. It was considered possible that this decrease in the brain morphine concentration may be due to an increase in the expression level of P-gp in the small intestine and to an increase in the expression level and binding activity of UGT2B in the liver. The results of this study suggest the possibility that a sufficient analgesic effect may not be obtained when morphine is administered in the presence of neuropathic pain due to a decrease in the total amount of morphine and M-6-G that reach the brain.


Subject(s)
Analgesics, Opioid/pharmacokinetics , Brain/metabolism , Drug Tolerance , Morphine/pharmacokinetics , Neuralgia/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Analgesics, Opioid/blood , Analgesics, Opioid/therapeutic use , Animals , Dose-Response Relationship, Drug , Glucuronosyltransferase/metabolism , Intestine, Small/metabolism , Liver/metabolism , Male , Mice, Inbred ICR , Morphine/blood , Morphine/therapeutic use , Morphine Derivatives/metabolism , Neuralgia/drug therapy , Sciatic Nerve/injuries
20.
Environ Pollut ; 206: 133-41, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26162332

ABSTRACT

To assess the effects of elevated concentrations of carbon dioxide (CO2) and ozone (O3) on the growth of two mid-successional oak species native to East Asia, Quercus mongolica var. crispula and Quercus serrata, we measured gas exchange and biomass allocation in seedlings (initially 1-year-old) grown under combinations of elevated CO2 (550 µmol mol(-1)) and O3 (twice-ambient) for two growing seasons in an open-field experiment in which root growth was not limited. Both the oak species showed a significant growth enhancement under the combination of elevated CO2 and O3 (indicated by total dry mass; over twice of ambient-grown plants, p < .05), which probably resulted from a preferable biomass partitioning into leaves induced by O3 and a predominant enhancement of photosynthesis under elevated CO2. Such an over-compensative response in the two Japanese oak species resulted in greater plant growth under the combination of elevated CO2 and O3 than elevated CO2 alone.


Subject(s)
Carbon Dioxide/metabolism , Ozone/pharmacology , Quercus/drug effects , Biomass , Carbon Dioxide/analysis , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Roots/drug effects , Plant Roots/growth & development , Quercus/growth & development , Seasons , Seedlings/drug effects , Seedlings/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...