Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Circ Genom Precis Med ; 15(2): e003500, 2022 04.
Article in English | MEDLINE | ID: mdl-35130025

ABSTRACT

BACKGROUND: Congenital heart disease (CHD) is the most common anomaly at birth, with a prevalence of ≈1%. While infants born to mothers with diabetes or obesity have a 2- to 3-fold increased incidence of CHD, the cause of the increase is unknown. Damaging de novo variants (DNV) in coding regions are more common among patients with CHD, but genome-wide rates of coding and noncoding DNVs associated with these prenatal exposures have not been studied in patients with CHD. METHODS: DNV frequencies were determined for 1812 patients with CHD who had whole-genome sequencing and prenatal history data available from the Pediatric Cardiac Genomics Consortium's CHD GENES study (Genetic Network). The frequency of DNVs was compared between subgroups using t test or linear model. RESULTS: Among 1812 patients with CHD, the number of DNVs per patient was higher with maternal diabetes (76.5 versus 72.1, t test P=3.03×10-11), but the difference was no longer significant after including parental ages in a linear model (paternal and maternal correction P=0.42). No interaction was observed between diabetes risk and parental age (paternal and maternal interaction P=0.80 and 0.68, respectively). No difference was seen in DNV count per patient based on maternal obesity (72.0 versus 72.2 for maternal body mass index <25 versus maternal body mass index >30, t test P=0.86). CONCLUSIONS: After accounting for parental age, the offspring of diabetic or obese mothers have no increase in DNVs compared with other children with CHD. These results emphasize the role for other mechanisms in the cause of CHD associated with these prenatal exposures. REGISTRATION: URL: https://clinicaltrials.gov; NCT01196182.


Subject(s)
Diabetes Mellitus , Heart Defects, Congenital , Body Mass Index , Child , Female , Gene Regulatory Networks , Heart Defects, Congenital/epidemiology , Humans , Infant , Infant, Newborn , Mothers , Obesity/complications , Obesity/genetics , Pregnancy
2.
Nat Genet ; 52(8): 769-777, 2020 08.
Article in English | MEDLINE | ID: mdl-32601476

ABSTRACT

A genetic etiology is identified for one-third of patients with congenital heart disease (CHD), with 8% of cases attributable to coding de novo variants (DNVs). To assess the contribution of noncoding DNVs to CHD, we compared genome sequences from 749 CHD probands and their parents with those from 1,611 unaffected trios. Neural network prediction of noncoding DNV transcriptional impact identified a burden of DNVs in individuals with CHD (n = 2,238 DNVs) compared to controls (n = 4,177; P = 8.7 × 10-4). Independent analyses of enhancers showed an excess of DNVs in associated genes (27 genes versus 3.7 expected, P = 1 × 10-5). We observed significant overlap between these transcription-based approaches (odds ratio (OR) = 2.5, 95% confidence interval (CI) 1.1-5.0, P = 5.4 × 10-3). CHD DNVs altered transcription levels in 5 of 31 enhancers assayed. Finally, we observed a DNV burden in RNA-binding-protein regulatory sites (OR = 1.13, 95% CI 1.1-1.2, P = 8.8 × 10-5). Our findings demonstrate an enrichment of potentially disruptive regulatory noncoding DNVs in a fraction of CHD at least as high as that observed for damaging coding DNVs.


Subject(s)
Genetic Variation/genetics , Heart Defects, Congenital/genetics , RNA, Untranslated/genetics , Adolescent , Adult , Animals , Female , Genetic Predisposition to Disease/genetics , Genomics , Heart/physiology , Humans , Male , Mice , Middle Aged , Open Reading Frames/genetics , RNA-Binding Proteins/genetics , Transcription, Genetic/genetics , Young Adult
3.
PLoS Genet ; 14(12): e1007822, 2018 12.
Article in English | MEDLINE | ID: mdl-30532227

ABSTRACT

Congenital diaphragmatic hernia (CDH) is a severe birth defect that is often accompanied by other congenital anomalies. Previous exome sequencing studies for CDH have supported a role of de novo damaging variants but did not identify any recurrently mutated genes. To investigate further the genetics of CDH, we analyzed de novo coding variants in 362 proband-parent trios including 271 new trios reported in this study. We identified four unrelated individuals with damaging de novo variants in MYRF (P = 5.3x10(-8)), including one likely gene-disrupting (LGD) and three deleterious missense (D-mis) variants. Eight additional individuals with de novo LGD or missense variants were identified from our other genetic studies or from the literature. Common phenotypes of MYRF de novo variant carriers include CDH, congenital heart disease and genitourinary abnormalities, suggesting that it represents a novel syndrome. MYRF is a membrane associated transcriptional factor highly expressed in developing diaphragm and is depleted of LGD variants in the general population. All de novo missense variants aggregated in two functional protein domains. Analyzing the transcriptome of patient-derived diaphragm fibroblast cells suggest that disease associated variants abolish the transcription factor activity. Furthermore, we showed that the remaining genes with damaging variants in CDH significantly overlap with genes implicated in other developmental disorders. Gene expression patterns and patient phenotypes support pleiotropic effects of damaging variants in these genes on CDH and other developmental disorders. Finally, functional enrichment analysis implicates the disruption of regulation of gene expression, kinase activities, intra-cellular signaling, and cytoskeleton organization as pathogenic mechanisms in CDH.


Subject(s)
Genetic Variation , Hernias, Diaphragmatic, Congenital/genetics , Membrane Proteins/genetics , Mutation , Transcription Factors/genetics , Child, Preschool , DNA Copy Number Variations , Developmental Disabilities/genetics , Female , Heart Defects, Congenital/genetics , Hernias, Diaphragmatic, Congenital/metabolism , Humans , Infant, Newborn , Longitudinal Studies , Male , Membrane Proteins/metabolism , Mutation, Missense , Phenotype , Sequence Analysis, RNA , Syndrome , Transcription Factors/metabolism , Exome Sequencing , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...