Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(10)2022 May 20.
Article in English | MEDLINE | ID: mdl-35629712

ABSTRACT

Induced pluripotent stem cells (iPSCs) are widely considered important for developing novel regenerative therapies. A major challenge to the growth and proliferation of iPSCs is the maintenance of their undifferentiated status in xeno- and feeder-free conditions. Basic fibroblast growth factor (bFGF) is known to contribute to the expansion of stem cells; however, bFGF is notoriously heat-labile and easily denatured. Here, we investigate the effects of a series of synthetic sulfated/sulfonated polymers and saccharides on the growth of iPSCs. We observed that these materials effectively prevented the reduction of bFGF levels in iPSC culture media during storage at 37 °C. Some of the tested materials also suppressed heat-induced decline in medium performance and maintained cell proliferation. Our results suggest that these sulfated materials can be used to improve the expansion culture of undifferentiated iPSCs and show the potential of cost effective, chemically defined materials for improvement of medium performance while culturing iPSCs.

2.
Biochem Biophys Rep ; 25: 100929, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33553689

ABSTRACT

Series of sulfonated polymers were evaluated as additives in cell culture media. Some of the compounds, such as sulfated polyvinyl alcohol (PVA), prevented denaturation and loss of basic fibroblast growth factor during cell culture and enhanced human mesenchymal stem cell proliferation. These compounds are xeno-free alternatives of heparin, an animal-derived sulfated saccharide, often used as an additive. To the best our knowledge, this study is the first to show that chemically defined synthetic chemicals, such as sulfated polyvinyl alcohol, can be used for this purpose.

3.
Photochem Photobiol ; 81(4): 970-4, 2005.
Article in English | MEDLINE | ID: mdl-15853447

ABSTRACT

The generation of reactive oxygen species (ROS) by ultraviolet radiation (UVR) accelerates skin aging, which is known as photoaging. Because cutaneous iron catalyzes ROS generation, sequestering iron by chelating agents is thought to be an effective approach toward preventing photoaging. Previously, N-(4-pyridoxylmethylene)-l-serine (PYSer) was designed as an antioxidant to suppress iron-catalyzed ROS generation by its iron-sequestering activity. In this study, PYSer showed protective effects against skin damage in hairless mice irradiated with ultraviolet B (UV-B). Topical application of PYSer to the skin significantly delayed and/or decreased the visible wrinkle formation induced by chronic UV-B irradiation. A histological study indicated that UV-B-induced epidermal hypertrophy and lymphocytic infiltration were suppressed by PYSer. Moreover, PYSer showed suppressive activity against the UV-B-induced increase in glycosaminoglycans (GAG). These results indicate that PYSer is a promising antioxidant for the prevention of chronic skin photoaging by its iron-sequestering activity.


Subject(s)
Serine/pharmacology , Skin Aging/drug effects , Skin/growth & development , Skin/radiation effects , Vitamin B 6/pharmacology , Animals , Female , Mice , Mice, Hairless , Skin/drug effects , Skin Aging/radiation effects
4.
FEBS Lett ; 526(1-3): 106-10, 2002 Aug 28.
Article in English | MEDLINE | ID: mdl-12208514

ABSTRACT

Nuclear factor (NF)-kappa B pathways are influenced by the intracellular reduction-oxidation (redox) balance. While NF-kappa B is activated through inhibitor (I)-kappa B degradation by oxidative stress, its DNA binding is accelerated in the reduced state. We found that N,N'-diacetyl-L-cystine dimethylester (DACDM) suppressed the UVB-induced NF-kappa B binding activity at a much lower concentration (50-100 microM) than N-acetyl-L-cysteine (NAC, 10-30 mM). While NAC suppressed the I-kappa B degradation but not the DNA binding, DACDM prevented the activated NF-kappa B from binding DNA, without influencing the I-kappa B degradation. These properties of DACDM make it possible to effectively regulate the intracellular redox balance.


Subject(s)
Acetylcysteine/pharmacology , Cystine/analogs & derivatives , Cystine/pharmacology , Glutathione/metabolism , NF-kappa B/radiation effects , Ultraviolet Rays , Antioxidants/pharmacology , Cell Line , Cell Nucleus/metabolism , Cell Nucleus/radiation effects , Cytosol/metabolism , Cytosol/radiation effects , Glutathione Disulfide/metabolism , Humans , Kinetics , NF-kappa B/metabolism , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...