Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 192(11): 743, 2020 Nov 02.
Article in English | MEDLINE | ID: mdl-33136233

ABSTRACT

Bogs are nutrient poor, acidic ecosystems that receive their water and nutrients entirely from precipitation (= ombrogenous) and as a result are sensitive to nutrient loading from atmospheric sources. Bogs occur frequently on the northern Alberta landscape, estimated to cover 6% of the Athabasca Oil Sands Area. As a result of oil sand extraction and processing, emissions of nitrogen (N) and sulfur (S) to the atmosphere have led to increasing N and S deposition that have the potential to alter the structure and function of these traditionally nutrient-poor ecosystems. At present, no detailed protocol is available for monitoring potential change of these sensitive ecosystems. We propose a user-friendly protocol that will monitor potential plant and lichen responses to future environmental inputs of nutrients and provide a structured means for collecting annual data. The protocol centers on measurement of five key plant/lichen attributes, including changes in (1) plant abundances, (2) dominant shrub annual growth and primary production, (3) lichen health estimated through chlorophyll/phaeophytin concentrations, (4) Sphagnum annual growth and production, and (5) annual growth of the dominant tree species (Picea mariana). We placed five permanent plots in each of six bogs located at different distances from the center of oil sand extraction and sampled these for 2 years (2018 and 2019). We compared line intercept with point intercept plant assessments using NMDS ordination, concluding that both methods provide comparable data. These data indicated that each of our six bog sites differ in key species abundances. Structural differences were apparent for the six sites between years. These differences were mostly driven by changes in Vaccinium oxycoccos, not the dominant shrubs. We developed allometric growth equations for the dominant two shrubs (Rhododendron groenlandicum and Chamaedaphne calyculata). Equations developed for each of the six sites produced growth values that were not different from one another nor from one developed using data from all sites. Annual growth of R. groenlandicum differed between sites, but not years, whereas growth of C. calyculata differed between the 2 years with more growth in 2018 compared with 2019. In comparison, Sphagnum plant density and stem bulk density both had strong site differences, with stem mass density higher in 2019. When combined, annual production of S. fuscum was greater in 2019 at three sites and not different at three of the sites. Chlorophyll and phaeophytin concentrations from the epiphytic lichen Evernia mesomorpha also differed between sites and years. This protocol for field assessments of five key plant/lichen response variables indicated that both site and year are factors that must be accounted for in future assessments. A portion of the site variation was related to patterns of N and S deposition.


Subject(s)
Nitrogen , Wetlands , Alberta , Ecosystem , Environmental Monitoring , Nitrogen/analysis , Oil and Gas Fields
2.
PLoS Negl Trop Dis ; 10(5): e0004658, 2016 05.
Article in English | MEDLINE | ID: mdl-27149521

ABSTRACT

Zika virus (ZIKV) is a mosquito-borne pathogen which has recently spread beyond Africa and into Pacific and South American regions. Despite first being detected in 1947, very little information is known about the virus, and its spread has been associated with increases in Guillain-Barre syndrome and microcephaly. There are currently no known vaccines or antivirals against ZIKV infection. Progress in assessing interventions will require the development of animal models to test efficacies; however, there are only limited reports on in vivo studies. The only susceptible murine models have involved intracerebral inoculations or juvenile animals, which do not replicate natural infection. Our report has studied the effect of ZIKV infection in type-I interferon receptor deficient (A129) mice and the parent strain (129Sv/Ev) after subcutaneous challenge in the lower leg to mimic a mosquito bite. A129 mice developed severe symptoms with widespread viral RNA detection in the blood, brain, spleen, liver and ovaries. Histological changes were also striking in these animals. 129Sv/Ev mice developed no clinical symptoms or histological changes, despite viral RNA being detectable in the blood, spleen and ovaries, albeit at lower levels than those seen in A129 mice. Our results identify A129 mice as being highly susceptible to ZIKV and thus A129 mice represent a suitable, and urgently required, small animal model for the testing of vaccines and antivirals.


Subject(s)
Disease Models, Animal , Receptor, Interferon alpha-beta/metabolism , Zika Virus Infection/immunology , Zika Virus Infection/virology , Zika Virus/classification , Animals , Brain/pathology , Disease Susceptibility , Female , Mice , Mice, Knockout , RNA, Viral/genetics , RNA, Viral/metabolism , Receptor, Interferon alpha-beta/deficiency , Receptor, Interferon alpha-beta/genetics , Zika Virus/pathogenicity , Zika Virus Infection/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...