Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Viruses ; 16(2)2024 01 31.
Article in English | MEDLINE | ID: mdl-38399994

ABSTRACT

Chronic Human Immunodeficiency Virus (HIV) infection remains a significant challenge to global public health. Despite advances in antiretroviral therapy (ART), which has transformed HIV infection from a fatal disease into a manageable chronic condition, a definitive cure remains elusive. One of the key features of HIV infection is chronic immune activation and inflammation, which are strongly associated with, and predictive of, HIV disease progression, even in patients successfully treated with suppressive ART. Chronic inflammation is characterized by persistent inflammation, immune cell metabolic dysregulation, and cellular exhaustion and dysfunction. This review aims to summarize current knowledge of the interplay between chronic inflammation, immune metabolism, and T cell dysfunction in HIV infection, and also discusses the use of humanized mice models to study HIV immune pathogenesis and develop novel therapeutic strategies.


Subject(s)
HIV Infections , HIV-1 , Humans , Animals , Mice , HIV-1/physiology , Inflammation/pathology , T-Lymphocytes/metabolism
2.
Mol Ther ; 32(4): 1000-1015, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38414243

ABSTRACT

Adoptive cell therapy (ACT) using T cells expressing chimeric antigen receptors (CARs) is an area of intense investigation in the treatment of malignancies and chronic viral infections. One of the limitations of ACT-based CAR therapy is the lack of in vivo persistence and maintenance of optimal cell function. Therefore, alternative strategies that increase the function and maintenance of CAR-expressing T cells are needed. In our studies using the humanized bone marrow/liver/thymus (BLT) mouse model and nonhuman primate (NHP) model of HIV infection, we evaluated two CAR-based gene therapy approaches. In the ACT approach, we used cytokine enhancement and preconditioning to generate greater persistence of anti-HIV CAR+ T cells. We observed limited persistence and expansion of anti-HIV CAR T cells, which led to minimal control of the virus. In our stem cell-based approach, we modified hematopoietic stem/progenitor cells (HSPCs) with anti-HIV CAR to generate anti-HIV CAR T cells in vivo. We observed CAR-expressing T cell expansion, which led to better plasma viral load suppression. HSPC-derived CAR cells in infected NHPs showed superior trafficking and persistence in multiple tissues. Our results suggest that a stem cell-based CAR T cell approach may be superior in generating long-term persistence and functional antiviral responses against HIV infection.


Subject(s)
HIV Infections , HIV-1 , Receptors, Chimeric Antigen , Mice , Animals , T-Lymphocytes , Receptors, Chimeric Antigen/genetics , Hematopoietic Stem Cells , Immunotherapy, Adoptive
3.
Mol Ther Methods Clin Dev ; 30: 276-287, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37575091

ABSTRACT

Hematopoietic stem cell gene therapy has been successfully used for a number of genetic diseases and is also being explored for HIV. However, toxicity of the conditioning regimens has been a major concern. Here we compared current conditioning approaches in a clinically relevant nonhuman primate model. We first customized various aspects of the therapeutic approach, including mobilization and cell collection protocols, conditioning regimens that support engraftment with minimal collateral damage, and cell manufacturing and infusing schema that reflect and build on current clinical approaches. Through a series of iterative in vivo experiments in two macaque species, we show that busulfan conditioning significantly spares lymphocytes and maintains a superior immune response to mucosal challenge with simian/human immunodeficiency virus, compared to total body irradiation and melphalan regimens. Comparative mobilization experiments demonstrate higher cell yield relative to our historical standard, primed bone marrow and engraftment of CRISPR-edited hematopoietic stem and progenitor cells (HSPCs) after busulfan conditioning. Our findings establish a detailed workflow for preclinical HSPC gene therapy studies in the nonhuman primate model, which in turn will support testing of novel conditioning regimens and more advanced HSPC gene editing techniques tailored to any disease of interest.

4.
Front Immunol ; 14: 1100594, 2023.
Article in English | MEDLINE | ID: mdl-36860850

ABSTRACT

Introduction: While antibodies raised by SARS-CoV-2 mRNA vaccines have had compromised efficacy to prevent breakthrough infections due to both limited durability and spike sequence variation, the vaccines have remained highly protective against severe illness. This protection is mediated through cellular immunity, particularly CD8+ T cells, and lasts at least a few months. Although several studies have documented rapidly waning levels of vaccine-elicited antibodies, the kinetics of T cell responses have not been well defined. Methods: Interferon (IFN)-γ enzyme-linked immunosorbent spot (ELISpot) assay and intracellular cytokine staining (ICS) were utilized to assess cellular immune responses (in isolated CD8+ T cells or whole peripheral blood mononuclear cells, PBMCs) to pooled peptides spanning spike. ELISA was performed to quantitate serum antibodies against the spike receptor binding domain (RBD). Results: In two persons receiving primary vaccination, tightly serially evaluated frequencies of anti-spike CD8+ T cells using ELISpot assays revealed strikingly short-lived responses, peaking after about 10 days and becoming undetectable by about 20 days after each dose. This pattern was also observed in cross-sectional analyses of persons after the first and second doses during primary vaccination with mRNA vaccines. In contrast, cross-sectional analysis of COVID-19-recovered persons using the same assay showed persisting responses in most persons through 45 days after symptom onset. Cross-sectional analysis using IFN-γ ICS of PBMCs from persons 13 to 235 days after mRNA vaccination also demonstrated undetectable CD8+ T cells against spike soon after vaccination, and extended the observation to include CD4+ T cells. However, ICS analyses of the same PBMCs after culturing with the mRNA-1273 vaccine in vitro showed CD4+ and CD8+ T cell responses that were readily detectable in most persons out to 235 days after vaccination. Discussion: Overall, we find that detection of spike-targeted responses from mRNA vaccines using typical IFN-γ assays is remarkably transient, which may be a function of the mRNA vaccine platform and an intrinsic property of the spike protein as an immune target. However, robust memory, as demonstrated by capacity for rapid expansion of T cells responding to spike, is maintained at least several months after vaccination. This is consistent with the clinical observation of vaccine protection from severe illness lasting months. The level of such memory responsiveness required for clinical protection remains to be defined.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , 2019-nCoV Vaccine mRNA-1273 , Cross-Sectional Studies , Leukocytes, Mononuclear , COVID-19/prevention & control , Vaccination , Cytokines , Antibodies, Viral , Enzyme-Linked Immunospot Assay
5.
Res Sq ; 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38168407

ABSTRACT

Neurocognitive deficits are prevalent among people living with HIV, likely due to chronic inflammation and oxidative stress in the brain. To date, no pharmaceutical treatments beyond antiretroviral therapy (ARV) has been shown to reduce risk for, or severity of, HIV-associated neurocognitive disorder. Here we investigate a novel compound, CDDO-Me, with documented neuroprotective effects via activation of the nrf2 and inhibition of the NFkB pathways. Methods: We conducted three studies to assess the efficacy of CDDO-Me alone or in combination with antiretroviral therapy in humanized mice infected with HIV; behavioral, histopathological, and immunohistochemical. Results: CDDO-Me in combination with ARV rescued social interaction deficits; however, only ARV was associated with preserved functioning in other behaviors, and CDDO-Me may have attenuated those benefits. A modest neuroprotective effect was found for CDDO-Me when administered with ARV, via preservation of PSD-95 expression; however, ARV alone had a more consistent protective effect. No significant changes in antioxidant enzyme expression levels were observed in CDDO-Me-treated animals. Only ARV use seemed to affect some antioxidant levels, indicating that it is ARV rather than CDDO-Me that is the major factor providing neuroprotection in this animal model. Finally, immunohistochemical analysis found that several cellular markers in various brain regions varied due to ARV rather than CDDO-Me. Conclusion: Limited benefit of CDDO-Me on behavior and neuroprotection were observed. Instead, ARV was shown to be the more beneficial treatment. These experiments support the future use of this chimeric mouse for behavioral experiments in neuroHIV research.

6.
JCI Insight ; 7(22)2022 11 22.
Article in English | MEDLINE | ID: mdl-36509289

ABSTRACT

A hallmark of HIV-1 infection is chronic inflammation, even in patients treated with antiretroviral therapy (ART). Chronic inflammation drives HIV-1 pathogenesis, leading to loss of CD4+ T cells and exhaustion of antiviral immunity. Therefore, strategies to safely reduce systematic inflammation are needed to halt disease progression and restore defective immune responses. Autophagy is a cellular mechanism for disposal of damaged organelles and elimination of intracellular pathogens. Autophagy is pivotal for energy homeostasis and plays critical roles in regulating immunity. However, how it regulates inflammation and antiviral T cell responses during HIV infection is unclear. Here, we demonstrate that autophagy is directly linked to IFN-I signaling, which is a key driver of immune activation and T cell exhaustion during chronic HIV infection. Impairment of autophagy leads to spontaneous IFN-I signaling, and autophagy induction reduces IFN-I signaling in monocytic cells. Importantly, in HIV-1-infected humanized mice, autophagy inducer rapamycin treatment significantly reduced persistent IFN-I-mediated inflammation and improved antiviral T cell responses. Cotreatment of rapamycin with ART led to significantly reduced viral rebound after ART withdrawal. Taken together, our data suggest that therapeutically targeting autophagy is a promising approach to treat persistent inflammation and improve immune control of HIV replication.


Subject(s)
HIV Infections , HIV-1 , Interferon Type I , Mice , Animals , Sirolimus/pharmacology , Sirolimus/therapeutic use , Autophagy
7.
Front Immunol ; 13: 926696, 2022.
Article in English | MEDLINE | ID: mdl-36248834

ABSTRACT

Cannabis (Cannabis sativa) is a widely used drug in the United States and the frequency of cannabis use is particularly high among people living with HIV (PLWH). One key component of cannabis, the non-psychotropic (-)-cannabidiol (CBD) exerts a wide variety of biological actions, including anticonvulsive, analgesic, and anti-inflammatory effects. However, the exact mechanism of action through which CBD affects the immune cell signaling remains poorly understood. Here we report that CBD modulates type I interferon responses in human macrophages. Transcriptomics analysis shows that CBD treatment significantly attenuates cGAS-STING-mediated activation of type I Interferon response genes (ISGs) in monocytic THP-1 cells. We further showed that CBD treatment effectively attenuates 2'3-cGAMP stimulation of ISGs in both THP-1 cells and primary human macrophages. Interestingly, CBD significantly upregulates expression of autophagy receptor p62/SQSTM1. p62 is critical for autophagy-mediated degradation of stimulated STING. We observed that CBD treated THP-1 cells have elevated autophagy activity. Upon 2'3'-cGAMP stimulation, CBD treated cells have rapid downregulation of phosphorylated-STING, leading to attenuated expression of ISGs. The CBD attenuation of ISGs is reduced in autophagy deficient THP-1 cells, suggesting that the effects of CBD on ISGs is partially mediated by autophagy induction. Lastly, CBD decreases ISGs expression upon HIV infection in THP-1 cells and human primary macrophages, leading to increased HIV RNA expression 24 hours after infection. However, long term culture with CBD in infected primary macrophages reduced HIV viral spread, suggesting potential dichotomous roles of CBD in HIV replication. Our study highlights the immune modulatory effects of CBD and the needs for additional studies on its effect on viral infection and inflammation.


Subject(s)
Cannabidiol , HIV Infections , Interferon Type I , Anti-Inflammatory Agents , Cannabidiol/pharmacology , HIV Infections/drug therapy , Humans , Macrophages , Nucleotidyltransferases , RNA , Sequestosome-1 Protein
8.
J Vis Exp ; (188)2022 10 06.
Article in English | MEDLINE | ID: mdl-36282697

ABSTRACT

The human immunodeficiency virus (HIV-1) pandemic continues to spread unabated worldwide, and currently, there is no vaccine available against HIV. Although combinational antiretroviral therapy (cART) has been successful in suppressing viral replication, it cannot completely eradicate the reservoir from HIV-infected individuals. A safe and effective cure strategy for HIV infection will require multipronged methods, and therefore the advancements of animal models for HIV-1 infection are pivotal for the development of HIV cure research. Humanized mice recapitulate key features of HIV-1 infection. The humanized mouse model can be infected by HIV-1 and viral replication can be controlled with cART regimens. Moreover, cART interruption results in a prompt viral rebound in humanized mice. However, administration of cART to the animal can be ineffective, difficult, or toxic, and many clinically relevant cART regimens are unable to be optimally utilized. Along with being potentially unsafe for researchers, administration of cART by a commonly used intensive daily injection procedure induces stress by physical restraint of the animal. The novel oral cART method to treat HIV-1 infected humanized mice described in this article resulted in suppression of viremia below the detection level, increased rate of CD4+ restoration, and improved overall health in HIV-1 infected humanized mice.


Subject(s)
HIV Infections , HIV-1 , Mice , Humans , Animals , HIV Infections/drug therapy , Anti-Retroviral Agents/therapeutic use , Anti-Retroviral Agents/pharmacology , Viremia/drug therapy , Virus Replication , Viral Load , CD4-Positive T-Lymphocytes
10.
PLoS Pathog ; 18(1): e1010160, 2022 01.
Article in English | MEDLINE | ID: mdl-34995311

ABSTRACT

Novel therapeutic strategies are needed to attenuate increased systemic and gut inflammation that contribute to morbidity and mortality in chronic HIV infection despite potent antiretroviral therapy (ART). The goal of this study is to use preclinical models of chronic treated HIV to determine whether the antioxidant and anti-inflammatory apoA-I mimetic peptides 6F and 4F attenuate systemic and gut inflammation in chronic HIV. We used two humanized murine models of HIV infection and gut explants from 10 uninfected and 10 HIV infected persons on potent ART, to determine the in vivo and ex vivo impact of apoA-I mimetics on systemic and intestinal inflammation in HIV. When compared to HIV infected humanized mice treated with ART alone, mice on oral apoA-I mimetic peptide 6F with ART had consistently reduced plasma and gut tissue cytokines (TNF-α, IL-6) and chemokines (CX3CL1) that are products of ADAM17 sheddase activity. Oral 6F attenuated gut protein levels of ADAM17 that were increased in HIV-1 infected mice on potent ART compared to uninfected mice. Adding oxidized lipoproteins and endotoxin (LPS) ex vivo to gut explants from HIV infected persons increased levels of ADAM17 in myeloid and intestinal cells, which increased TNF-α and CX3CL1. Both 4F and 6F attenuated these changes. Our preclinical data suggest that apoA-I mimetic peptides provide a novel therapeutic strategy that can target increased protein levels of ADAM17 and its sheddase activity that contribute to intestinal and systemic inflammation in treated HIV. The large repertoire of inflammatory mediators involved in ADAM17 sheddase activity places it as a pivotal orchestrator of several inflammatory pathways associated with morbidity in chronic treated HIV that make it an attractive therapeutic target.


Subject(s)
Apolipoprotein A-I , HIV Infections/pathology , Inflammation/pathology , Intestines/drug effects , Peptides/pharmacology , ADAM17 Protein/drug effects , Animals , Anti-HIV Agents/pharmacology , Humans , Mice
11.
Article in English | MEDLINE | ID: mdl-37067894

ABSTRACT

Aim: A peripheral inflammatory response can drive neuroinflammation in a number of infections including human immunodeficiency virus (HIV). Monocyte/macrophage (M/Mφ) activation is a hallmark of acute HIV infection and a source of chronic inflammation in a subset of HIV-infected individuals. We sought to decrease peripheral inflammation and M/Mφ transmigration after HIV infection by engineering extracellular vesicles (EV) to antagonize a microRNA (miR) associated with inflammation. We hypothesized that induced pluripotent stem cell (iPSC)-derived monocyte EVs (mEVs), engineered to contain an antagomir to miR-155 (αmiR mEV) would target monocyte inflammation and influence neuroinflammation in an HIV-infected humanized mice. Methods: mEVs were characterized by tetraspanins, nanoparticle tracking analysis, electron microscopy, and their preferential entry into circulating monocytes as well as testing for endogenous selected miRNAs. HIV-infected humanized mice were treated with control or antagomir155 mEVs. Plasma viral load was measured plus activation markers on lymphocytes and monocytes and the number of macrophages in the brain was quantified. Results: mEVs preferentially entered peripheral monocytes. HIV infection increased C-C chemokine receptor type 5 (CCR5) and major histocompatibility complex, class II, DR (HLA-DR) expression on T cells and monocytes. Treatments with mEVs did not decrease plasma HIV viral load; however, mEVs alone resulted in a decrease in %CCR5+ and %HLA-DR+ on T cells and an increase in %CCR5+ monocytes. αmiR mEVs decreased %CCR5 on M/Mφ. The mEV-treated HIV-infected mice did not show an increase in macrophage transmigration to the brain. Conclusion: mEVs alone caused an unexpected decrease in lymphocyte activation and increase in monocyte %CCR5; however, this did not translate to an increase in macrophage transmigration to the brain.

12.
PLoS Pathog ; 17(8): e1009895, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34460861

ABSTRACT

[This corrects the article DOI: 10.1371/journal.ppat.1009404.].

13.
ACS Nano ; 15(7): 11180-11191, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34159781

ABSTRACT

Studies of two SARS-CoV-2 mRNA vaccines suggested that they yield ∼95% protection from symptomatic infection at least short-term, but important clinical questions remain. It is unclear how vaccine-induced antibody levels quantitatively compare to the wide spectrum induced by natural SARS-CoV-2 infection. Vaccine response kinetics and magnitudes in persons with prior COVID-19 compared to virus-naïve persons are not well-defined. The relative stability of vaccine-induced versus infection-induced antibody levels is unclear. We addressed these issues with longitudinal assessments of vaccinees with and without prior SARS-CoV-2 infection using quantitative enzyme-linked immunosorbent assay (ELISA) of anti-RBD antibodies. SARS-CoV-2-naïve individuals achieved levels similar to mild natural infection after the first vaccination; a second dose generated levels approaching severe natural infection. In persons with prior COVID-19, one dose boosted levels to the high end of severe natural infection even in those who never had robust responses from infection, increasing no further after the second dose. Antiviral neutralizing assessments using a spike-pseudovirus assay revealed that virus-naïve vaccinees did not develop physiologic neutralizing potency until the second dose, while previously infected persons exhibited maximal neutralization after one dose. Finally, antibodies from vaccination waned similarly to natural infection, resulting in an average of ∼90% loss within 90 days. In summary, our findings suggest that two doses are important for quantity and quality of humoral immunity in SARS-CoV-2-naïve persons, while a single dose has maximal effects in those with past infection. Antibodies from vaccination wane with kinetics very similar to that seen after mild natural infection; booster vaccinations will likely be required.


Subject(s)
COVID-19 , Viral Vaccines , Humans , COVID-19 Vaccines , COVID-19/prevention & control , Antibody Formation , SARS-CoV-2 , Antibodies, Viral , Antibodies, Neutralizing , Vaccination
14.
PLoS Pathog ; 17(4): e1009404, 2021 04.
Article in English | MEDLINE | ID: mdl-33793675

ABSTRACT

Due to the durability and persistence of reservoirs of HIV-1-infected cells, combination antiretroviral therapy (ART) is insufficient in eradicating infection. Achieving HIV-1 cure or sustained remission without ART treatment will require the enhanced and persistent effective antiviral immune responses. Chimeric Antigen Receptor (CAR) T-cells have emerged as a powerful immunotherapy and show promise in treating HIV-1 infection. Persistence, trafficking, and maintenance of function remain to be a challenge in many of these approaches, which are based on peripheral T cell modification. To overcome many of these issues, we have previously demonstrated successful long-term engraftment and production of anti-HIV CAR T cells in modified hematopoietic stem cells (HSCs) in vivo. Here we report the development and in vivo testing of second generation CD4-based CARs (CD4CAR) against HIV-1 infection using a HSCs-based approach. We found that a modified, truncated CD4-based CAR (D1D2CAR) allows better CAR-T cell differentiation from gene modified HSCs, and maintains similar CTL activity as compared to the full length CD4-based CAR. In addition, D1D2CAR does not mediate HIV infection or stimulation mediated by IL-16, suggesting lower risk of off-target effects. Interestingly, stimulatory domains of 4-1BB but not CD28 allowed successful hematopoietic differentiation and improved anti-viral function of CAR T cells from CAR modified HSCs. Addition of 4-1BB to CD4 based CARs led to faster suppression of viremia during early untreated HIV-1 infection. D1D2CAR 4-1BB mice had faster viral suppression in combination with ART and better persistence of CAR T cells during ART. In summary, our data indicate that the D1D2CAR-41BB is a superior CAR, showing better HSC differentiation, viral suppression and persistence, and less deleterious functions compared to the original CD4CAR, and should continue to be pursued as a candidate for clinical study.


Subject(s)
HIV Infections/virology , Hematopoietic Stem Cells/cytology , Lymphocyte Activation , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/immunology , Animals , HIV Infections/immunology , HIV-1/immunology , Hematopoietic Stem Cells/immunology , Humans , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mice , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/therapeutic use
15.
JCI Insight ; 6(1)2021 01 11.
Article in English | MEDLINE | ID: mdl-33427210

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) with CCR5- donor cells is the only treatment known to cure HIV-1 in patients with underlying malignancy. This is likely due to a donor cell-mediated graft-versus-host effect targeting HIV reservoirs. Allo-HSCT would not be an acceptable therapy for most people living with HIV due to the transplant-related side effects. Chimeric antigen receptor (CAR) immunotherapies specifically traffic to malignant lymphoid tissues (lymphomas) and, in some settings, are able to replace allo-HSCT. Here, we quantified the engraftment of HSC-derived, virus-directed CAR T cells within HIV reservoirs in a macaque model of HIV infection, using potentially novel IHC assays. HSC-derived CAR cells trafficked to and displayed multilineage engraftment within tissue-associated viral reservoirs, persisting for nearly 2 years in lymphoid germinal centers, the brain, and the gastrointestinal tract. Our findings demonstrate that HSC-derived CAR+ cells reside long-term and proliferate in numerous tissues relevant for HIV infection and cancer.


Subject(s)
HIV Infections/immunology , HIV Infections/therapy , Hematopoietic Stem Cell Transplantation , Immunotherapy, Adoptive , Animals , Cell Lineage/immunology , Disease Models, Animal , Disease Reservoirs/virology , Gastrointestinal Tract/immunology , Gastrointestinal Tract/pathology , Gastrointestinal Tract/virology , Germinal Center/immunology , Germinal Center/pathology , Germinal Center/virology , HIV Infections/virology , HIV-1 , Humans , Immunohistochemistry , Macaca nemestrina , Male , Receptors, Chimeric Antigen/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/therapy , Simian Acquired Immunodeficiency Syndrome/virology , Transplantation, Homologous
16.
AIDS ; 35(4): 543-553, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33306550

ABSTRACT

OBJECTIVES: Despite antiretroviral therapy (ART), there is an unmet need for therapies to mitigate immune activation in HIV infection. The goal of this study is to determine whether the apoA-I mimetics 6F and 4F attenuate macrophage activation in chronic HIV. DESIGN: Preclinical assessment of the in-vivo impact of Tg6F and the ex-vivo impact of apoA-I mimetics on biomarkers of immune activation and gut barrier dysfunction in treated HIV. METHODS: We used two humanized murine models of HIV infection to determine the impact of oral Tg6F with ART (HIV+ART+Tg6F+) on innate immune activation (plasma human sCD14, sCD163) and gut barrier dysfunction [murine I-FABP, endotoxin (LPS), LPS-binding protein (LBP), murine sCD14]. We also used gut explants from 10 uninfected and 10 HIV-infected men on potent ART and no morbidity, to determine the impact of ex-vivo treatment with 4F for 72 h on secretion of sCD14, sCD163, and I-FABP from gut explants. RESULTS: When compared with mice treated with ART alone (HIV+ART+), HIV+ART+Tg6F+ mice attenuated macrophage activation (h-sCD14, h-sCD163), gut barrier dysfunction (m-IFABP, LPS, LBP, and m-sCD14), plasma and gut tissue oxidized lipoproteins. The results were consistent with independent mouse models and ART regimens. Both 4F and 6F attenuated shedding of I-FABP and sCD14 from gut explants from HIV-infected and uninfected participants. CONCLUSION: Given that gut barrier dysfunction and macrophage activation are contributors to comorbidities like cardiovascular disease in HIV, apoA-I mimetics should be tested as therapy for morbidity in chronic treated HIV.


Subject(s)
HIV Infections , Animals , Apolipoprotein A-I , Biomarkers , HIV Infections/drug therapy , Lipopolysaccharide Receptors , Macrophage Activation , Mice
17.
Article in English | MEDLINE | ID: mdl-32903563

ABSTRACT

The HIV reservoir remains to be a difficult barrier to overcome in order to achieve a therapeutic cure for HIV. Several strategies have been developed to purge the reservoir, including the "kick and kill" approach, which is based on the notion that reactivating the latent reservoir will allow subsequent elimination by the host anti-HIV immune cells. However, clinical trials testing certain classes of latency reactivating agents (LRAs) have so far revealed the minimal impact on reducing the viral reservoir. A robust immune response to reactivated HIV expressing cells is critical for this strategy to work. A current focus to enhance anti-HIV immunity is through the use of chimeric antigen receptors (CARs). Currently, HIV-specific CARs are being applied to peripheral T cells, NK cells, and stem cells to boost recognition and killing of HIV infected cells. In this review, we summarize current developments in engineering HIV directed CAR-expressing cells to facilitate HIV elimination. We also summarize current LRAs that enhance the "kick" strategy and how new generation and combinations of LRAs with HIV specific CAR T cell therapies could provide an optimal strategy to target the viral reservoir and achieve HIV clearance from the body.


Subject(s)
HIV Infections , HIV-1 , CD4-Positive T-Lymphocytes , HIV Infections/therapy , Humans , Killer Cells, Natural , Virus Latency
18.
EMBO Mol Med ; 12(7): e8662, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32578942

ABSTRACT

Mice xenotransplanted with human cells and/or expressing human gene products (also known as "humanized mice") recapitulate the human evolutionary specialization and diversity of genotypic and phenotypic traits. These models can provide a relevant in vivo context for understanding of human-specific physiology and pathologies. Humanized mice have advanced toward mainstream preclinical models and are now at the forefront of biomedical research. Here, we considered innovations and challenges regarding the reconstitution of human immunity and human tissues, modeling of human infections and cancer, and the use of humanized mice for testing drugs or regenerative therapy products. As the number of publications exploring different facets of humanized mouse models has steadily increased in past years, it is becoming evident that standardized reporting is needed in the field. Therefore, an international community-driven resource called "Minimal Information for Standardization of Humanized Mice" (MISHUM) has been created for the purpose of enhancing rigor and reproducibility of studies in the field. Within MISHUM, we propose comprehensive guidelines for reporting critical information generated using humanized mice.


Subject(s)
Disease Models, Animal , Guidelines as Topic , Heterografts/standards , Animals , Humans , Mice , Mice, SCID , Neoplasms , Reproducibility of Results
19.
Cell Stem Cell ; 25(4): 542-557.e9, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31495780

ABSTRACT

Invariant natural killer T (iNKT) cells are potent immune cells for targeting cancer; however, their clinical application has been hindered by their low numbers in cancer patients. Here, we developed a proof-of-concept for hematopoietic stem cell-engineered iNKT (HSC-iNKT) cell therapy with the potential to provide therapeutic levels of iNKT cells for a patient's lifetime. Using a human HSC engrafted mouse model and a human iNKT TCR gene engineering approach, we demonstrated the efficient and long-term generation of HSC-iNKT cells in vivo. These HSC-iNKT cells closely resembled endogenous human iNKT cells, could deploy multiple mechanisms to attack tumor cells, and effectively suppressed tumor growth in vivo in multiple human tumor xenograft mouse models. Preclinical safety studies showed no toxicity or tumorigenicity of the HSC-iNKT cell therapy. Collectively, these results demonstrated the feasibility, safety, and cancer therapy potential of the proposed HSC-iNKT cell therapy and laid a foundation for future clinical development.


Subject(s)
Hematopoietic Stem Cells/physiology , Immunotherapy, Adoptive/methods , Natural Killer T-Cells/physiology , Neoplasms/therapy , Animals , Cells, Cultured , Genetic Engineering , Humans , Mice , Mice, SCID , Natural Killer T-Cells/transplantation , Neoplasms/immunology , Receptors, Antigen, T-Cell/genetics , Xenograft Model Antitumor Assays
20.
J Virol ; 93(20)2019 10 15.
Article in English | MEDLINE | ID: mdl-31341054

ABSTRACT

The HIV/AIDS pandemic remains an important threat to human health. We have recently demonstrated that a novel microRNA (miR), miR-128, represses retrotransposon long interspaced element 1 (L1) by a dual mechanism, namely, by directly targeting the coding region of the L1 RNA and by repressing a required nuclear import factor (TNPO1). We have further determined that miR-128 represses the expression of all three TNPO proteins (transportins TNPO1, TNPO2, and TNPO3). Here, we establish that miR-128 also influences HIV-1 replication by repressing TNPO3, a factor that regulates HIV-1 nuclear import and viral; replication of TNPO3 is well established to regulate HIV-1 nuclear import and viral replication. Here, we report that type I interferon (IFN)-inducible miR-128 directly targets two sites in the TNPO3 mRNA, significantly downregulating TNPO3 mRNA and protein expression levels. Challenging miR-modulated Jurkat cells or primary CD4+ T-cells with wild-type (WT), replication-competent HIV-1 demonstrated that miR-128 reduces viral replication and delays spreading of infection. Manipulation of miR-128 levels in HIV-1 target cell lines and in primary CD4+ T-cells by overexpression or knockdown showed that reduction of TNPO3 levels by miR-128 significantly affects HIV-1 replication but not murine leukemia virus (MLV) infection and that miR-128 modulation of HIV-1 replication is reduced with TNPO3-independent HIV-1 virus, suggesting that miR-128-indued TNPO3 repression contributes to the inhibition of HIV-1 replication. Finally, we determine that anti-miR-128 partly neutralizes the IFN-mediated block of HIV-1. Thus, we have established a novel role of miR-128 in antiviral defense in human cells, namely inhibiting HIV-1 replication by altering the cellular milieu through targeting factors that include TNPO3.IMPORTANCE HIV-1 is the causative agent of AIDS. During HIV-1 infection, type I interferons (IFNs) are induced, and their effectors limit HIV-1 replication at multiple steps in its life cycle. However, the cellular targets of INFs are still largely unknown. In this study, we identified the interferon-inducible microRNA (miR) miR-128, a novel antiviral mediator that suppresses the expression of the host gene TNPO3, which is known to modulate HIV-1 replication. Notably, we observe that anti-miR-128 partly neutralizes the IFN-mediated block of HIV-1. Elucidation of the mechanisms through which miR-128 impairs HIV-1 replication may provide novel candidates for the development of therapeutic interventions.


Subject(s)
Gene Expression Regulation/drug effects , HIV Infections/genetics , HIV Infections/virology , HIV-1/physiology , Interferons/pharmacology , MicroRNAs/genetics , Virus Replication , beta Karyopherins/genetics , 3' Untranslated Regions , Cell Line , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , Models, Biological , RNA Interference
SELECTION OF CITATIONS
SEARCH DETAIL
...