Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Behav ; 238: 113465, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34029586

ABSTRACT

In humans, affective states can bias responses to ambiguous information: a phenomenon termed judgment bias (JB). Judgment biases have great potential for assessing affective states in animals, in both animal welfare and biomedical research. New animal JB tasks require construct validation, but for laboratory mice (Mus musculus), the most common research vertebrate, a valid JB task has proved elusive. Here (Experiment 1), we demonstrate construct validity for a novel mouse JB test: an olfactory Go/Go task in which subjects dig for high- or low-value food rewards. In C57BL/6 and Balb/c mice faced with ambiguous cues, latencies to dig were sensitive to high/low welfare housing: environmentally-enriched animals responded with relative 'optimism' through shorter latencies. Illustrating the versatility of this validated JB task across different fields of research, it further allowed us to test hypotheses about the mood-altering effects of cancer in male and female nude mice (Experiment 2). Males, although not females, treated ambiguous cues as intermediate; and males bearing subcutaneous lung adenocarcinomas also responded more pessimistically to these than did healthy controls. To our knowledge, this is the first evidence of a valid mouse JB task, and the first demonstration of pessimism in tumor-bearing animals. This task still needs to be refined to improve its sensitivity. However, it has great potential for investigating mouse welfare, the links between affective state and disease, depression-like states in animals, and hypotheses regarding the neurobiological mechanisms that underlie affect-mediated biases in judgment.


Subject(s)
Neoplasms , Pessimism , Animals , Behavior, Animal , Bias , Cognition , Female , Judgment , Male , Mice , Mice, Inbred C57BL , Mice, Nude
2.
Behav Brain Res ; 373: 112056, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31288059

ABSTRACT

Stereotypic behaviour (SB) is common in animals housed in farm, zoo or laboratory conditions, including captive Carnivora (e.g. wild ursids and felids). Neurobiological data on housing-induced SBs come from four species (macaques, two rodent species, and horses), and suggest basal ganglia (BG) dysfunction. We investigated whether similar patterns occur in Carnivora via a model, American mink, because their SB is distinctive in form and timing. We raised 32 males in non-enriched (NE) or enriched (E) cages for 2 years, and assessed two forms of SB: 1) Carnivora-typical locomotor-and-whole-body ('loco') SBs (e.g. pacing, weaving); 2) scrabbling with the forepaws. Neuronal activity was analysed via cytochrome oxidase (CO) staining of the dorsal striatum (caudate; putamen), globus pallidus (externus, GPe; internus, GPi), STN, and nucleus accumbens (NAc); and the GPe:GPi ratio (GPr) calculated to assess relative activation of direct and indirect pathways. NE mink stereotyped more, and had lower GPr CO-staining indicating relatively lower indirect pathway activation. However, no single BG area was affected by housing and nor did GPr values covary with SB. Independent of housing, elevated NAc CO-staining predicted more loco SB, while scrabbling, probably because it negatively correlated with loco SB, negatively covaried with NAc CO-staining in NE subjects. These results thus implicate the NAc in individual differences in mink SB. However, because they cannot explain why NE subjects showed more SB, they provide limited support for the BG dysfunction hypothesis for this species' housing-induced SB. More research is therefore needed to understand how barren housing causes SB in captive Carnivora.


Subject(s)
Basal Ganglia/physiopathology , Stereotyped Behavior/physiology , Animals , Behavior, Animal/physiology , Brain/physiology , Corpus Striatum/physiology , Environment , Globus Pallidus/physiology , Housing, Animal , Male , Mink/physiology , Nucleus Accumbens/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...