Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
PeerJ ; 11: e15951, 2023.
Article in English | MEDLINE | ID: mdl-37810793

ABSTRACT

Locating colonies of rare bats can be a time consuming process, as it is often difficult to know where to focus survey effort. However, identifying peaks of bat activity via acoustic monitoring may provide insights into whether a colony is locally present, and help screen out sites with low potential. Using a triage approach, we developed a survey methodology for locating colonies of the woodland-specialist barbastelle bat (Barbastella barbastellus). We investigated whether woodland occupancy by a colony could be predicted by acoustic data, and assessed the influence of survey effort (number of acoustic detectors deployed) on detectability. The methodology was then trialled in citizen science surveys of 77 woodlands, with follow-up radio-tracking surveys by specialists being used to confirm presence or absence. Using Receiver Operating Characteristic (ROC) curve analysis, we found that a threshold of four barbastelle passes recorded by at least one detector within one hour of sunset optimised the balance between the true- and false-positive rates. Subsequently, we found that a minimum survey effort of one detector per 6.25 hectares of woodland was needed to ensure a colony would be detected using this threshold, based on a survey sensitivity of 90%. Radio-tracking surveys in a subset of the woodlands, identified as having a high probability of being occupied by a colony based on acoustic monitoring, confirmed the presence of five previously unknown barbastelle maternity colonies. These results demonstrate that a triage system, in which high probability woodland sites are identified based on acoustic survey data, can be used to prioritise sites for future specialist surveys and conservation action.


Subject(s)
Chiroptera , Humans , Pregnancy , Animals , Female , Forests , Acoustics
2.
Nature ; 487(7406): 202-4, 2012 Jul 12.
Article in English | MEDLINE | ID: mdl-22763438

ABSTRACT

It is a firm prediction of the concordance cold-dark-matter cosmological model that galaxy clusters occur at the intersection of large-scale structure filaments. The thread-like structure of this 'cosmic web' has been traced by galaxy redshift surveys for decades. More recently, the warm­hot intergalactic medium (a sparse plasma with temperatures of 10(5) kelvin to 10(7) kelvin) residing in low-redshift filaments has been observed in emission and absorption. However, a reliable direct detection of the underlying dark-matter skeleton, which should contain more than half of all matter, has remained elusive, because earlier candidates for such detections were either falsified or suffered from low signal-to-noise ratios and unphysical misalignments of dark and luminous matter. Here we report the detection of a dark-matter filament connecting the two main components of the Abell 222/223 supercluster system from its weak gravitational lensing signal, both in a non-parametric mass reconstruction and in parametric model fits. This filament is coincident with an overdensity of galaxies and diffuse, soft-X-ray emission, and contributes a mass comparable to that of an additional galaxy cluster to the total mass of the supercluster. By combining this result with X-ray observations, we can place an upper limit of 0.09 on the hot gas fraction (the mass of X-ray-emitting gas divided by the total mass) in the filament.

SELECTION OF CITATIONS
SEARCH DETAIL
...