Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Anim Physiol Anim Nutr (Berl) ; 102(1): e486-e492, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28447376

ABSTRACT

Fasting of up to 24 hr has been shown to increase intestinal permeability (IP) in chickens. The aim of this study was to determine whether fasting duration of 4.5 and 9 hr increased IP and whether l-glutamine (a non-essential amino acid) supplementation before fasting provided some protection of barrier function as shown in other species. Ross 308 male broilers (n = 96) were fed either a control diet or the same diet supplemented with 1% glutamine from d0 to d38 post-hatch. On d37, the birds were assigned to single-bird metabolism cages and were fasted for either 0, 4.5, 9 or 19.5 hr. This study design was 2 × 4 factorial with two levels of glutamine and four levels of fasting. Birds in the 0-hr fasting group had free access to feed. All birds had ad libitum access to water. To measure IP on day 38, following their respective fasting periods, birds were administered two separate oral gavages of fluorescein isothiocyanate dextran (FITC-d) followed by lactulose, mannitol and rhamnose (LMR) sugars, 60 min apart. Whole blood was collected from the jugular vein 90 min post-LMR sugar gavage. FITC-d and L/M/R ratios were measured by spectrophotometry and high-performance ionic chromatography respectively. Lipopolysaccharide (LPS) endotoxins in plasma of the birds fed the control diet were also measured using chicken-specific LPS antibody ELISA. Serum FITC-d and plasma L/M and L/R ratios for 4.5, 9 and 19.5 hr were significantly (p < .05) higher compared to the non-fasting group. However, IP was not different in the glutamine-supplemented group (p > .05) compared to the control group. LPS concentrations measured by the ELISA were below the detectable range. We conclude that fasting periods of 4.5 and 9 hr increased IP compared to non-fasted birds and dietary glutamine supplementation did not ameliorate changes in IP.


Subject(s)
Chickens/physiology , Food Deprivation , Animal Feed/analysis , Animals , Dextrans , Diet/veterinary , Fluorescein-5-isothiocyanate/analogs & derivatives , Glutamine , Intestines , Lactulose/blood , Male , Mannitol/blood , Permeability , Rhamnose/blood , Time Factors
2.
J Anim Physiol Anim Nutr (Berl) ; 102(2): e653-e661, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29034530

ABSTRACT

Short-term fasting for 4.5 and 9 hr has been demonstrated to increase intestinal permeability (IP) in chickens. This study aimed to investigate the effects of 0, 4.5, 9 and 19.5 hr fasting on intestinal gene expression and villus-crypt architecture of enterocytes in jejunal and ileal samples. On day 38, Ross-308 male birds were fasted according to their group and then euthanised. Two separate intestinal sections (each 2 cm long, jejunum and ileum) were collected. One section was utilised for villus height and crypt depth measurements. The second section was snap-frozen in liquid nitrogen for quantitative polymerase chain reaction (qPCR) analysis of tight junction proteins (TJP) including claudin-1, claudin-3, occludin, zonula occludens (ZO-1, ZO-2), junctional adhesion molecules (JAM) and E-cadherin. Additionally genes involved in enterocyte protection including glucagon-like peptide (GLP-2), heat-shock protein (HSP-70), intestinal alkaline phosphatase (IAP), mammalian target of rapamycin (mTOR), toll-like receptors (TLR-4), mucin (MUC-2), cluster differentiation (CD-36) and fatty acid-binding protein (FABP-6) were also analysed. Normally distributed data were analysed using one-way analysis of variance ANOVA. Other data were analysed by non-parametric one-way ANOVA. Villus height and crypt depth were increased (p < .05) only in the ileum after fasting for 4.5 and 9 hr compared with non-fasting group. mRNA expression of claudin-3 was significantly reduced in the ileum of birds fasted for 9 and 19.5 hr, suggesting a role in IP modulation. However, all other TJP genes examined were not statistically different from control. Nevertheless, ileal FABP-6 of all fasted groups was significantly reduced, which could possibly be due to reduced bile acid production during fasting.


Subject(s)
Chickens/physiology , Food Deprivation , Gene Expression Regulation/physiology , Intestinal Mucosa/physiology , Animals , Male , Permeability , Polymerase Chain Reaction/methods , Polymerase Chain Reaction/veterinary , Time Factors , Transcriptome
3.
J Anim Physiol Anim Nutr (Berl) ; 101(5): e237-e245, 2017 Oct.
Article in English | MEDLINE | ID: mdl-27730676

ABSTRACT

Increased intestinal permeability (IP) can lead to compromised health in chickens. As there is limited literature on in vivo biomarkers to assess increased IP in chickens, the objective of this study was to identify a reliable biomarker of IP using DSS ingestion and fasting models. Male Ross chickens (n = 48) were reared until day 14 on the floor pen in an animal care facility, randomized into the following groups: control, DSS and fasting (each with n = 16), and then placed in metabolism cages. DSS was administered in drinking water at 0.75% from days 16 to 21, while controls and fasted groups received water. All birds had free access to feed and water except the birds in the fasting group that were denied feed for 19.5 h on day 20. On day 21, all chickens were given two separate oral gavages comprising fluorescein isothiocyanate dextran (FITC-d, 2.2 mg in 1 ml/bird) at time zero and lactulose, mannitol and rhamnose (LMR) sugars (0.25 g L, 0.05 g M and 0.05 g R in 2 ml/bird) at 60 min. Whole blood was collected from the brachial vein in a syringe 90 min post-LMR sugar gavage. Serum FITC-d and plasma LMR sugar concentrations were measured by spectrophotometry and high-performance ion chromatography respectively. Plasma concentrations of intestinal fatty acid binding protein, diamine oxidase, tight junction protein (TJP), d-lactate and faecal α-antitrypsin inhibitor concentration were also analysed by ELISA. FITC-d increased significantly (p < 0.05) after fasting compared with control. L/M and L/R ratios for fasting and L/M ratio for DSS increased compared with control chickens (p < 0.05). TJP in plasma was significantly increased due to fasting but not DSS treatment, compared with controls. Other tests did not indicate changes in IP (p > 0.05). We concluded that FITC-d and LMR sugar tests can be used in chickens to assess changes in IP.


Subject(s)
Chickens/blood , Food Deprivation , Intestinal Mucosa/drug effects , Animals , Biomarkers , Dextran Sulfate , Lactulose/blood , Male , Mannitol/blood , Permeability , Rhamnose/blood
4.
Animal ; 11(7): 1174-1179, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27881199

ABSTRACT

Increased intestinal permeability (IP) can lead to compromised health. Limited in vivo IP research has been conducted in chickens. The objectives of the current study were to develop a model of increased IP utilizing lipopolysaccharide (LPS Escherichia coli O55:B5) and to evaluate IP changes using the lactulose, mannitol and rhamnose (LMR) sugar permeability test. In addition, fluorescein isothiocyanate dextran (FITC-d), d-lactate, zonula occludens (ZO-1) and diamine oxidase (DAO) permeability tests were employed. Male Ross chickens were reared until day 14 on the floor in an animal care facility and then transferred to individual cages in three separate experiments. In each of experiments 1 and 2, 36 chicks were randomly allocated to receive either saline (control) or LPS (n=18/group). Lactulose, mannitol and rhamnose sugar concentration in blood was measured at 0, 30, 60, 90, 120 and 180 min in experiment 1, at 60, 90 and 120 min in experiment 2 and at 90 min in experiment 3 (n=16/group). Lipopolysaccharide was injected intraperitoneally at doses of 0.5, 1 and 1 mg/kg BW in experiments 1, 2 and 3, respectively, on days 16, 18 and 20, whereas control received sterile saline. On day 21, only birds in experiments 1 and 2 were fasted for 19.5 h. Chicks were orally gavaged with the LMR sugars (0.25 gL, 0.05 gM, 0.05 gR/bird) followed by blood collection (from the brachial vein) as per time point for each experiment. Only in experiment 3, were birds given an additional oral gavage of FITC-d (2.2 mg/ml per bird) 60 min after the first gavage. Plasma d-lactate, ZO-1 and DAO concentrations were also determined by ELISA in experiment 3 (n=10). Administration of LPS did not affect IP as measured by the LMR sugar test compared with control. This was also confirmed by FITC-d and DAO levels in experiment 3 (P>0.05). The plasma levels of d-lactate were decreased (P<0.05). Plasma levels of ZO-1 were increased in the third experiment only and did not change in the first two experiments. Lipopolysaccharide at doses of 0.5 and 1 mg/kg did not increase IP in this model system. In conclusion, the LMR sugar can be detected in blood 90 min after the oral gavage. Further studies are needed for the applicability of LMR sugars tests.


Subject(s)
Chickens/physiology , Escherichia coli/chemistry , Lipopolysaccharides/administration & dosage , Models, Biological , Amine Oxidase (Copper-Containing)/blood , Amine Oxidase (Copper-Containing)/metabolism , Animals , Dextrans/analysis , Dextrans/metabolism , Fluorescein-5-isothiocyanate/analogs & derivatives , Fluorescein-5-isothiocyanate/analysis , Fluorescein-5-isothiocyanate/metabolism , Intestines/physiology , Lactic Acid/blood , Lactic Acid/metabolism , Lactulose/blood , Lactulose/metabolism , Male , Mannitol/blood , Mannitol/metabolism , Permeability/drug effects , Random Allocation , Rhamnose/blood , Rhamnose/metabolism , Tight Junctions/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...