Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Infect Dis ; 23(1): 857, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38057707

ABSTRACT

Every novel infection requires an assessment of the host response coupled with identification of unique biomarkers for predicting disease pathogenesis, treatment targets and diagnostic utility. Studies have exposed dysregulated inflammatory response induced by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as significant predictor or cause of disease severity/prognosis and death. This study evaluated inflammatory biomarkers induced by SARS-CoV-2 in plasma of patients with varying disease phenotypes and healthy controls with prognostic or therapeutic potential. We stratified SARS-CoV-2 plasma samples based on disease status (asymptomatic, mild, severe, and healthy controls), as diagnosed by RT-PCR SARS-CoV-2. We used a solid phase sandwich and competitive Enzyme-Linked Immunosorbent Assay (ELISA) to measure levels of panels of immunological (IFN-γ, TNF-α, IL-6, and IL-10) and biochemical markers (Ferritin, Procalcitonin, C-Reactive Protein, Angiotensin II, Homocysteine, and D-dimer). Biomarker levels were compared across SARS-CoV-2 disease stratification. Plasma IFN-γ, TNF-α, IL-6, and IL-10 levels were significantly (P < 0.05) elevated in the severe SARS-CoV-2 patients as compared to mild, asymptomatic, and healthy controls. Ferritin, Homocysteine, and D-dimer plasma levels were significantly elevated in severe cases over asymptomatic and healthy controls. Plasma C-reactive protein and Angiotensin II levels were significantly (P < 0.05) higher in mild than severe cases and healthy controls. Plasma Procalcitonin levels were significantly higher in asymptomatic than in mild, severe cases and healthy controls. Our study demonstrates the role of host inflammatory biomarkers in modulating the pathogenesis of COVID-19. The study proposes a number of potential biomarkers that could be explored as SARS-CoV-2 treatment targets and possible prognostic predictors for a severe outcome. The comprehensive analysis of prognostic biomarkers may contribute to the evidence-based management of COVID-19 patients.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Interleukin-10 , C-Reactive Protein/analysis , Tumor Necrosis Factor-alpha , Interleukin-6 , Procalcitonin , Uganda , Angiotensin II , Biomarkers , Phenotype , Ferritins , Homocysteine
2.
Heliyon ; 7(1): e05688, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33437885

ABSTRACT

BACKGROUND: Information as regards the epidemiology of the Anaplasmataceae in small ruminants in several low- and middle-income countries is scarce. METHODS: In this study a total of 712 DNA samples collected from small ruminants were analyzed for Anaplasmataceae and Anaplasma ovis using the 16S rRNA and MSP4 genes respectively. Infection risk was assessed by location, sex and age of the animals and qGIS® was used to construct spatial maps. RESULTS: The prevalence of Anaplasmataceae spp was 89.1% (95% CI: 77.5-95.9) and 79.1% (95% CI: 75.9-82.1) in ovines and caprines respectively (RR = 1.1, 95% CI: 1.0-1.3); higher than those previously reported in other eastern African countries. The prevalence of A. ovis was 26.1% and 25.4% for both ovines and caprines respectively with ovines showing significantly higher levels of infection than caprines (P < 0.05). The risk of Anaplasma ovis infections was not affected by age (OR = 1.2, 95% CI: 0.9-1.7) or sex (OR = 1.1, 95% CI: 0.6-2.0). Small ruminants located at the forest edge (<0.3 km) showed higher A. ovis prevalence than those found inland with infections present in the midland regions associated with increased agricultural activity. CONCLUSION: Anaplasma ovis remains a major challenge for small ruminant husbandry in Uganda and infections are under-reported. Policy efforts to prioritize management of Anaplasmataceae for small ruminant health would promote livestock productivity in vulnerable communities, improving livelihoods and ecosystem health.

3.
Exp Parasitol ; 211: 107844, 2020 Feb 29.
Article in English | MEDLINE | ID: mdl-32119932

ABSTRACT

The Loopamp™ Trypanosoma brucei Detection Kit is the latest addition of molecular techniques for amplification of parasite DNA in biological materials. We have evaluated the kit on a number of preparations of crude templates from the blood of experimentally infected rodents, to provide the best option that can be extrapolated to resource-poor healthcare settings where human African trypanosomiasis (HAT) is endemic. We used rodent blood spiked with T. b. brucei at various serial dilutions to test whole blood, that was concentrated by differential lysis of red blood cells (RBCs) followed by centrifugation, or buffy coat samples recovered from whole blood after centrifugation. We also tested crude templates produced after lysis of blood with sodium dodecyl sulphate (SDS) or Triton X, and storage for up to 28 days at room temperature after spotting on filter paper or glass slides. Concentration by RBC lysis provided the highest analytical sensitivity (0.04 trypanosomes/ml), closely followed by the much cheaper SDS at 0.1 trypanosomes/ml sensitivity. We also monitored the persistence of DNA in lysed blood dried onto filter papers by testing them weekly with the LAMP kit and by PCR for the 177bp repeats characteristic of the T. brucei subspecies. At a concentration of 100 trypanosomes/ml, signals indicating presence of parasite DNA could be detected up to week 10, while at 10 trypanosomes/ml detection of signals was limited to week 4. Thus, an ordinary filter paper provides a convenient medium for preservation of trypanosome DNA at ambient conditions for use with the LAMP kit in the short run. Lysis of samples with SDS enhanced sensitivity by facilitating parasite DNA availability. This opens the avenue to incorporate LAMP in routine algorithms for HAT diagnosis and surveillance, as well as for monitoring elimination programs.

4.
Trop Med Infect Dis ; 5(1)2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32046044

ABSTRACT

We carried out a baseline survey of cattle in Kaberamaido district, in the context of controlling the domestic animal reservoir of Trypanosoma brucei rhodesiense human African trypanosomiasis (rHAT) towards elimination. Cattle blood was subjected to capillary tube centrifugation followed by measurement of the packed cell volume (PCV) and examination of the buffy coat area for motile trypanosomes. Trypanosomes were detected in 561 (21.4%) out of 2621 cattle screened by microscopy. These 561 in addition to 724 apparently trypanosome negative samples with low PCVs (≤25%) were transported to the laboratory and tested by PCR targeting the trypanosomal Internal Transcribed Spacer (ITS-1) as well as suspect Tick-Borne Diseases (TBDs) including Anaplasmamosis, Babesiosis, and Theileriosis. PCR for Anaplasma sp yielded the highest number of positive animals (45.2%), followed by Trypanosoma sp (44%), Theileria sp (42.4%) and Babesia (26.3%); multiple infections were a common occurrence. Interestingly, 373 (29%) of these cattle with low PCVs were negative by PCR, pointing to other possible causes of aneamia, such as helminthiasis. Among the trypanosome infections classified as T. brucei by ITS-PCR, 5.5% were positive by SRA PCR, and were, therefore, confirmed as T. b. rhodesiense. Efforts against HAT should therefore consider packages that address a range of conditions. This may enhance acceptability and participation of livestock keepers in programs to eliminate this important but neglected tropical disease. In addition, we demonstrated that cattle remain an eminent reservoir for T. b. rhodesiense in eastern Uganda, which must be addressed to sustain HAT elimination.

5.
Parasit Vectors ; 10(1): 546, 2017 Nov 03.
Article in English | MEDLINE | ID: mdl-29100526

ABSTRACT

BACKGROUND: Serological tests for gambiense human African trypanosomiasis (gHAT) detect antibodies to antigens on the cell surface of bloodstream trypanosomes. As trypanosomes that cause animal African trypanosomiasis (AAT) also express related antigens, we have evaluated two rapid diagnostic tests (RDTs) on cattle in trypanosomiasis endemic and non-endemic regions, to determine whether gHAT serological tests could also be used to screen for AAT. METHODS: Two RDTs, 1G RDT, made with native antigens, and p2G RDT, made with recombinant antigens, were tested on 121 cattle in a trypanosomiasis-free region, and on 312 cattle from a rhodesiense HAT and AAT endemic region. A subset of samples from the endemic region were also tested with two immune trypanolysis (TL) tests. The sensitivity of the tests was estimated by evaluating the result of the RDT on samples that were positive by both microscopy and internal transcribed spacer (ITS) PCR, whilst specificity was the result of the RDT on samples that were negative by ITS PCR and microscopy, and others from the non-endemic region. RESULTS: The specificity of the p2G RDT on cattle from the non-endemic region was 97.5% (95% CI: 93.0-99.2%), compared to only 57.9% (95% CI: 48.9-66.3%) for 1G RDT. The specificities of 1G RDT, p2G RDT and TL on endemic control cattle were 14.6% (95% CI: 9.7-21.5%), 22.6% (95% CI: 16.4-30.3%) and 68.3% (95% CI: 59.6-75.9%), respectively. The sensitivities of the tests on trypanosome positive samples were 85.1% (95% CI: 79.1-89.7%), 89.1% (95% CI: 83.7-93.0%) and 59.3% (95% CI: 51.8-66.4%), respectively. Among the same samples, 51.7% were positive by both TL and the 1G RDT. CONCLUSIONS: These serological tests detect cross-reacting antibodies in cattle. The p2G RDT based on recombinant antigens had a high specificity in a non-endemic region, while the 1G RDT had a lower specificity, suggesting cross-reactivity with other pathogens.


Subject(s)
Antibodies, Protozoan/blood , Cattle Diseases/diagnosis , Serologic Tests , Trypanosoma brucei gambiense/immunology , Trypanosomiasis, African/veterinary , Animals , Antigens, Protozoan/immunology , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/immunology , Cross Reactions , Humans , Polymerase Chain Reaction , Sensitivity and Specificity , Trypanosomiasis, African/diagnosis , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/immunology
6.
Onderstepoort J Vet Res ; 83(1): e1-7, 2016 Jul 29.
Article in English | MEDLINE | ID: mdl-27543147

ABSTRACT

A descriptive study was conducted to identify the different strains of Echinococcus granulosus occurring in livestock in Moroto district, Uganda. Echinococcus cysts from 104 domestic animals, including cattle, sheep, goats and camels, were taken and examined by microscopy, polymerase chain reaction with restriction fragment length polymorphism and Sanger DNA sequencing. Echinococcus granulosus genotypes or strains were identified through use of Bioinformatics tools: BioEdit, BLAST and MEGA6. The major finding of this study was the existence of a limited number of E. granulosus genotypes from cattle, goats, sheep and camels. The most predominant genotype was G1 (96.05%), corresponding to the common sheep strain. To a limited extent (3.95%), the study revealed the existence of Echinococcus canadensis G6/7 in three (n = 3) of the E. granulosus-positive samples. No other strains of E. granulosus were identified. It was concluded that the common sheep strain of Echinococcus sensu stricto and G6/7 of E. canadensis were responsible for echinococcal disease in Moroto district, Uganda.


Subject(s)
Echinococcosis/veterinary , Echinococcus granulosus/genetics , Animals , Camelus , Cattle , Echinococcosis/parasitology , Echinococcus granulosus/isolation & purification , Genotype , Goats , Helminth Proteins/genetics , Phylogeny , Polymerase Chain Reaction/veterinary , Polymorphism, Restriction Fragment Length , Sheep , Uganda/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...