Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Ecol Resour ; 23(1): 41-51, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36017818

ABSTRACT

Dietary metabarcoding has vastly improved our ability to analyse the diets of animals, but it is hampered by a plethora of technical limitations including potentially reduced data output due to the disproportionate amplification of the DNA of the focal predator, here termed "the predator problem". We review the various methods commonly used to overcome this problem, from deeper sequencing to exclusion of predator DNA during PCR, and how they may interfere with increasingly common multipredator-taxon studies. We suggest that multiprimer approaches with an emphasis on achieving both depth and breadth of prey detections may overcome the issue to some extent, although multitaxon studies require further consideration, as highlighted by an empirical example. We also review several alternative methods for reducing the prevalence of predator DNA that are conceptually promising but require additional empirical examination. The predator problem is a key constraint on molecular dietary analyses but, through this synthesis, we hope to guide researchers in overcoming this in an effective and pragmatic way.


Subject(s)
Food Chain , Predatory Behavior , Animals , DNA Primers/genetics , Polymerase Chain Reaction/methods , DNA/analysis , Diet
2.
Sci Adv ; 8(43): eabo6672, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36288308

ABSTRACT

The deepest marine ecosystem, the hadal zone, hosts endemic biodiversity resulting from geographic isolation and environmental selection pressures. However, the pan-ocean distribution of some fauna challenges the concept that the hadal zone is a series of isolated island-like habitats. Whether this remains true at the population genomic level is untested. We investigated phylogeographic patterns of the amphipod, Bathycallisoma schellenbergi, from 12 hadal features across the Pacific, Atlantic, Indian, and Southern oceans and analyzed genome-wide single-nucleotide polymorphism markers and two mitochondrial regions. Despite a cosmopolitan distribution, populations were highly restricted to individual features with only limited gene flow between topographically connected features. This lack of connectivity suggests that populations are on separate evolutionary trajectories, with evidence of potential cryptic speciation at the Atacama Trench. Together, this global study demonstrates that the shallower ocean floor separating hadal features poses strong barriers to dispersal, driving genetic isolation and creating pockets of diversity to conserve.

3.
Mol Ecol ; 28(2): 471-483, 2019 01.
Article in English | MEDLINE | ID: mdl-29485216

ABSTRACT

Determining the host-parasitoid interactions and parasitism rates for invasive species entering novel environments is an important first step in assessing potential routes for biocontrol and integrated pest management. Conventional insect rearing techniques followed by taxonomic identification are widely used to obtain such data, but this can be time-consuming and prone to biases. Here, we present a next-generation sequencing approach for use in ecological studies which allows for individual-level metadata tracking of large numbers of invertebrate samples through the use of hierarchically organised molecular identification tags. We demonstrate its utility using a sample data set examining both species identity and levels of parasitism in late larval stages of the oak processionary moth (Thaumetopoea processionea-Linn. 1758), an invasive species recently established in the United Kingdom. Overall, we find that there are two main species exploiting the late larval stages of oak processionary moth in the United Kingdom with the main parasitoid (Carcelia iliaca-Ratzeburg, 1840) parasitising 45.7% of caterpillars, while a rare secondary parasitoid (Compsilura concinnata-Meigen, 1824) was also detected in 0.4% of caterpillars. Using this approach on all life stages of the oak processionary moth may demonstrate additional parasitoid diversity. We discuss the wider potential of nested tagging DNA metabarcoding for constructing large, highly resolved species interaction networks.


Subject(s)
DNA Barcoding, Taxonomic , Host-Parasite Interactions/genetics , Introduced Species , Lepidoptera/parasitology , Animals , Ecosystem , Larva/genetics , Larva/parasitology , Lepidoptera/genetics , Moths/genetics , United Kingdom , Wasps/genetics , Wasps/parasitology
4.
Nature ; 522(7557): 470-3, 2015 Jun 25.
Article in English | MEDLINE | ID: mdl-25985178

ABSTRACT

Reproduction through sex carries substantial costs, mainly because only half of sexual adults produce offspring. It has been theorized that these costs could be countered if sex allows sexual selection to clear the universal fitness constraint of mutation load. Under sexual selection, competition between (usually) males and mate choice by (usually) females create important intraspecific filters for reproductive success, so that only a subset of males gains paternity. If reproductive success under sexual selection is dependent on individual condition, which is contingent to mutation load, then sexually selected filtering through 'genic capture' could offset the costs of sex because it provides genetic benefits to populations. Here we test this theory experimentally by comparing whether populations with histories of strong versus weak sexual selection purge mutation load and resist extinction differently. After evolving replicate populations of the flour beetle Tribolium castaneum for 6 to 7 years under conditions that differed solely in the strengths of sexual selection, we revealed mutation load using inbreeding. Lineages from populations that had previously experienced strong sexual selection were resilient to extinction and maintained fitness under inbreeding, with some families continuing to survive after 20 generations of sib × sib mating. By contrast, lineages derived from populations that experienced weak or non-existent sexual selection showed rapid fitness declines under inbreeding, and all were extinct after generation 10. Multiple mutations across the genome with individually small effects can be difficult to clear, yet sum to a significant fitness load; our findings reveal that sexual selection reduces this load, improving population viability in the face of genetic stress.


Subject(s)
Extinction, Biological , Genetic Fitness/physiology , Mating Preference, Animal/physiology , Tribolium/physiology , Animals , Biological Evolution , Female , Genetic Fitness/genetics , Inbreeding , Male , Mutation , Reproduction/genetics , Selection, Genetic/genetics , Selection, Genetic/physiology , Tribolium/genetics
5.
Mol Ecol ; 22(21): 5441-55, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24112379

ABSTRACT

The phytophagous beetle family Curculionidae is the most species-rich insect family known, with much of this diversity having been attributed to both co-evolution with food plants and host shifts at key points within the early evolutionary history of the group. Less well understood is the extent to which patterns of host use vary within or among related species, largely because of the technical difficulties associated with quantifying this. Here we develop a recently characterized molecular approach to quantify diet within and between two closely related species of weevil occurring primarily within dry forests on the island of Mauritius. Our aim is to quantify dietary variation across populations and assess adaptive and nonadaptive explanations for this and to characterize the nature of a trophic shift within an ecologically distinct population within one of the species. We find that our study species are polyphagous, consuming a much wider range of plants than would be suggested by the literature. Our data suggest that local diet variation is largely explained by food availability, and locally specialist populations consume food plants that are not phylogenetically novel, but do appear to represent a novel preference. Our results demonstrate the power of molecular methods to unambiguously quantify dietary variation across populations of insect herbivores, providing a valuable approach to understanding trophic interactions within and among local plant and insect herbivore communities.


Subject(s)
Genetics, Population , Herbivory , Weevils/genetics , Adaptation, Biological/genetics , Animals , Bayes Theorem , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Diet , Ecology/methods , Ecosystem , Genetic Variation , Haplotypes , Islands , Mauritius , Molecular Sequence Data , Phylogeny , Phylogeography , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL