Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Xenotransplantation ; 20(2): 100-9, 2013.
Article in English | MEDLINE | ID: mdl-23442186

ABSTRACT

BACKGROUND: We investigated whether graft produced anti-human CD2, mediated by adenovirus (Adv) transduction of pig neonatal islet cell clusters (pNICC), would protect xenografts in a humanized mouse model from immune attack and whether such immunosuppression would remain local. METHODS: A mouse anti-human CD2 Ab (CD2hb11) previously generated by us was genetically engineered to produce chimeric and humanized versions. The three forms of CD2hb11 were named dilimomab (mouse), diliximab (chimeric) and dilizumab (humanized). All 3 forms of CD2hb11 Ab were tested for their ability to bind CD3(+) human T cells and to inhibit a human anti-pig xenogeneic mixed lymphocyte reaction (MLR). They were administered systemically in a humanized mouse model in order to test their ability to deplete human CD3(+) T cells and whether they induced a cytokine storm. An adenoviral vector expressing diliximab was generated for transduction of pNICC. Humanized mice were transplanted with either control-transduced pNICC or diliximab-transduced pNICC and human T cells within grafts and spleens were enumerated by flow cytometry. RESULTS: Dilimomab and diliximab inhibited a human anti-pig xenogeneic response but dilizumab did not. All 3 forms of CD2hb11 Ab bound human T cells in vitro though dilimomab and diliximab exhibited 300-fold higher avidity than dilizumab. All 3 anti-CD2 Abs could deplete human CD3(+) T cells in vivo in a humanized mouse model without inducing upregulation of activation markers or significant release of cytokines. Humanized mice transplanted with diliximab-transduced pNICC afforded depletion of CD3(+) T cells at the graft site leaving the peripheral immune system intact. CONCLUSIONS: Local production of a single Ab against T cells can reduce graft infiltration at the xenograft site and may reduce the need for conventional, systemic immunosuppression.


Subject(s)
Antibodies, Monoclonal/pharmacology , CD2 Antigens/immunology , Immunosuppressive Agents/pharmacology , Islets of Langerhans Transplantation/immunology , T-Lymphocytes/immunology , Transplantation, Heterologous/immunology , Adenoviridae/genetics , Animals , Antibodies, Heterophile/immunology , Antibodies, Heterophile/pharmacology , Antibodies, Monoclonal/immunology , Antigens, Heterophile/genetics , Antigens, Heterophile/immunology , CD2 Antigens/genetics , Chimera , Flow Cytometry , Graft Rejection/immunology , Humans , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Lymphocyte Culture Test, Mixed , Mice , Mice, Inbred NOD , Mice, SCID , Species Specificity
2.
Proc Natl Acad Sci U S A ; 109(40): 16270-5, 2012 Oct 02.
Article in English | MEDLINE | ID: mdl-22988114

ABSTRACT

Synthetic CpG oligonucleotides (ODN) have potent immunostimulatory properties exploited in clinical vaccine trials. How CpG ODN are captured and delivered to the intracellular receptor TLR9, however, has been elusive. Here we show that DEC-205, a multilectin receptor expressed by a variety of cells, is a receptor for CpG ODN. When CpG ODN are used as an adjuvant, mice deficient in DEC-205 have impaired dendritic cell (DC) and B-cell maturation, are unable to make some cytokines such as IL-12, and display suboptimal cytotoxic T-cell responses. We reveal that DEC-205 directly binds class B CpG ODN and enhances their uptake. The CpG-ODN binding function of DEC-205 is conserved between mouse and man, although human DEC-205 preferentially binds a specific class B CpG ODN that has been selected for human clinical trials. Our findings identify an important receptor for class B CpG ODN and reveal a unique function for DEC-205.


Subject(s)
Antigens, CD/metabolism , B-Lymphocytes/metabolism , Dendritic Cells/metabolism , Lectins, C-Type/metabolism , Oligodeoxyribonucleotides/metabolism , Receptors, Cell Surface/metabolism , Animals , Antigens, CD/genetics , CHO Cells , Chromatography, Affinity , Chromatography, Gel , Cloning, Molecular , Cricetinae , Cricetulus , Cytokines/blood , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Humans , Lectins, C-Type/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , Minor Histocompatibility Antigens , Oligodeoxyribonucleotides/genetics , Receptors, Cell Surface/genetics , Species Specificity , Surface Plasmon Resonance
3.
Immunity ; 36(4): 646-57, 2012 Apr 20.
Article in English | MEDLINE | ID: mdl-22483802

ABSTRACT

The immune system must distinguish viable cells from cells damaged by physical and infective processes. The damaged cell-recognition molecule Clec9A is expressed on the surface of the mouse and human dendritic cell subsets specialized for the uptake and processing of material from dead cells. Clec9A recognizes a conserved component within nucleated and nonnucleated cells, exposed when cell membranes are damaged. We have identified this Clec9A ligand as a filamentous form of actin in association with particular actin-binding domains of cytoskeletal proteins. We have determined the crystal structure of the human CLEC9A C-type lectin domain and propose a functional dimeric structure with conserved tryptophans in the ligand recognition site. Mutation of these residues ablated CLEC9A binding to damaged cells and to the isolated ligand complexes. We propose that Clec9A provides targeted recruitment of the adaptive immune system during infection and can also be utilized to enhance immune responses generated by vaccines.


Subject(s)
Actin Cytoskeleton/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Lectins, C-Type/metabolism , Receptors, Immunologic/metabolism , Receptors, Mitogen/metabolism , Actins/metabolism , Adaptive Immunity , Animals , Binding Sites , Cell Line , Cell Membrane/metabolism , Dendritic Cells/cytology , Female , Humans , Lectins, C-Type/chemistry , Lectins, C-Type/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Protein Structure, Secondary , Receptors, Immunologic/genetics , Receptors, Mitogen/chemistry , Receptors, Mitogen/genetics , Spectrin/metabolism
4.
J Immunol ; 187(2): 842-50, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21677141

ABSTRACT

Three surface molecules of mouse CD8(+) dendritic cells (DCs), also found on the equivalent human DC subpopulation, were compared as targets for Ab-mediated delivery of Ags, a developing strategy for vaccination. For the production of cytotoxic T cells, DEC-205 and Clec9A, but not Clec12A, were effective targets, although only in the presence of adjuvants. For Ab production, however, Clec9A excelled as a target, even in the absence of adjuvant. Potent humoral immunity was a result of the highly specific expression of Clec9A on DCs, which allowed longer residence of targeting Abs in the bloodstream, prolonged DC Ag presentation, and extended CD4 T cell proliferation, all of which drove highly efficient development of follicular helper T cells. Because Clec9A shows a similar expression pattern on human DCs, it has particular promise as a target for vaccines of human application.


Subject(s)
Antigen Presentation/immunology , CD4-Positive T-Lymphocytes/immunology , Cytotoxicity Tests, Immunologic , Dendritic Cells/immunology , Immunophenotyping , Lectins, C-Type/metabolism , Receptors, Immunologic/metabolism , Adjuvants, Immunologic/administration & dosage , Animals , Antigen Presentation/genetics , Antigens, CD/genetics , Antigens, CD/metabolism , CD4-Positive T-Lymphocytes/classification , CD4-Positive T-Lymphocytes/metabolism , Cytotoxicity Tests, Immunologic/methods , Dendritic Cells/metabolism , Humans , Immunophenotyping/methods , Lectins, C-Type/genetics , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Mutant Strains , Mice, Transgenic , Minor Histocompatibility Antigens , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Receptors, Immunologic/genetics , Receptors, Mitogen/genetics , Receptors, Mitogen/metabolism , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/chemical synthesis , Recombinant Fusion Proteins/metabolism , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , Vaccines, DNA/chemical synthesis , Vaccines, DNA/genetics , Vaccines, DNA/immunology
5.
J Immunol ; 182(12): 7587-94, 2009 Jun 15.
Article in English | MEDLINE | ID: mdl-19494282

ABSTRACT

We have cloned the mouse and human C-type lectin Clec12A, expressed both, and produced mAb recognizing both. Mouse Clec12A is highly expressed on splenic CD8(+) dendritic cells (DC) and plasmacytoid DC. A proportion of CD8(-)DC also expresses lower levels of Clec12A, as do monocytes, macrophages, and B cells. Human CLEC12A, like the mouse counterpart, is expressed on blood monocytes and DC, including pDC and BDCA-3(+)DC, the proposed equivalent of mouse CD8(+)DC. To determine whether Ag targeted to Clec12A could induce immune responses, mice were injected with a rat mAb recognizing Clec12A, or a control rat mAb, then production of anti-rat Ig was measured. Anti-Clec12A mAb alone produced only moderate responses, but these were amplified by coinjecting only small amounts of LPS as a DC activation agent. Furthermore, when OVA was conjugated to anti-Clec12A mAb, OVA-specific T cells were induced to proliferate. This Ag presentation to naive T cells was due to targeting conventional DC, because their ablation eliminated T cell activation. The potent Ab responses induced using microgram amounts of anti-Clec12A and minimal amounts of adjuvant demonstrate that this molecule can be used as an Ag-delivery target to enhance Ab responses to vaccines.


Subject(s)
Antibody Formation/immunology , Antigens/immunology , Dendritic Cells/immunology , Lectins, C-Type/immunology , Receptors, Mitogen/immunology , Animals , Antigen Presentation/immunology , Cell Membrane/immunology , Cells, Cultured , Humans , Leukocytes/immunology , Mice
6.
Blood ; 112(8): 3264-73, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18669894

ABSTRACT

A novel dendritic cell (DC)-restricted molecule, Clec9A, was identified by gene expression profiling of mouse DC subtypes. Based on sequence similarity, a human ortholog was identified. Clec9A encodes a type II membrane protein with a single extracellular C-type lectin domain. Both the mouse Clec9A and human CLEC9A were cloned and expressed, and monoclonal antibodies (mAbs) against each were generated. Surface staining revealed that Clec9A was selective for mouse DCs and was restricted to the CD8(+) conventional DC and plasmacytoid DC subtypes. A subset of human blood DCs also expressed CLEC9A. A single injection of mice with a mAb against Clec9A, which targets antigens (Ags) to the DCs, produced a striking enhancement of antibody responses in the absence of added adjuvants or danger signals, even in mice lacking Toll-like receptor signaling pathways. Such targeting also enhanced CD4 and CD8 T-cell responses. Thus, Clec9A serves as a new marker to distinguish subtypes of both mouse and human DCs. Furthermore, targeting Ags to DCs with antibodies to Clec9A is a promising strategy to enhance the efficiency of vaccines, even in the absence of adjuvants.


Subject(s)
Dendritic Cells/cytology , Lectins, C-Type/chemistry , Amino Acid Sequence , Animals , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Hematopoietic Stem Cells/cytology , Humans , Lectins, C-Type/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Molecular Sequence Data , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Signal Transduction , Vaccines/chemistry , Vaccines/metabolism
7.
J Immunol ; 177(1): 372-82, 2006 Jul 01.
Article in English | MEDLINE | ID: mdl-16785533

ABSTRACT

A normalized subtracted gene expression library was generated from freshly isolated mouse dendritic cells (DC) of all subtypes, then used to construct cDNA microarrays. The gene expression profiles of the three splenic conventional DC (cDC) subsets were compared by microarray hybridization and two genes encoding signal regulatory protein beta (Sirpbeta1 and Sirpbeta4) molecules were identified as differentially expressed in CD8(-) cDC. Genomic sequence analysis revealed a third Sirpbeta member localized in the same gene cluster. These Sirpbeta genes encode cell surface molecules containing extracellular Ig domains and short intracytoplasmic domains that have a charged amino acid in the transmembrane region which can potentially interact with ITAM-bearing molecules to mediate signaling. Indeed, we demonstrated interactions between Sirpbeta1 and beta2 with the ITAM-bearing signaling molecule Dap12. Real-time PCR analysis showed that all three Sirpbeta genes were expressed by CD8(-) cDC, but not by CD8(+) cDC or plasmacytoid pre-DC. The related Sirpalpha gene showed a similar expression profile on cDC subtypes but was also expressed by plasmacytoid pre-DC. The differential expression of Sirpalpha and Sirpbeta1 molecules on DC was confirmed by staining with mAbs, including a new mAb recognizing Sirpbeta1. Cross-linking of Sirpbeta1 on DC resulted in a reduction in phagocytosis of Leishmania major parasites, but did not affect phagocytosis of latex beads, perhaps indicating that the regulation of phagocytosis by Sirpbeta1 is a ligand-dependent interaction. Thus, we postulate that the differential expression of these molecules may confer the ability to regulate the phagocytosis of particular ligands to CD8(-) cDC.


Subject(s)
CD8 Antigens , Dendritic Cells/immunology , Gene Expression Regulation , Receptors, Cell Surface/biosynthesis , Receptors, Cell Surface/genetics , Amino Acid Sequence , Animals , Base Sequence , CD8 Antigens/metabolism , Dendritic Cells/metabolism , Female , Gene Expression Regulation/immunology , Gene Library , Mice , Mice, Inbred C57BL , Molecular Sequence Data , NIH 3T3 Cells , Oligonucleotide Array Sequence Analysis , Rats , Rats, Wistar , Signal Transduction/immunology , Spleen/cytology , Spleen/immunology , Spleen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...