Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 9(5)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329807

ABSTRACT

Inappropriate immune activity is key in the pathogenesis of multiple diseases, and it is typically driven by excess inflammation and/or autoimmunity. IL-1 is often the effector owing to its powerful role in both innate and adaptive immunity, and, thus, it is tightly controlled at multiple levels. IL-1R2 antagonizes IL-1, but effects of losing this regulation are unknown. We found that IL-1R2 resolves inflammation by rapidly scavenging free IL-1. Specific IL-1R2 loss in germinal center (GC) T follicular regulatory (Tfr) cells increased the GC response after a first, but not booster, immunization, with an increase in T follicular helper (Tfh) cells, GC B cells, and antigen-specific antibodies, which was reversed upon IL-1 blockade. However, IL-1 signaling is not obligate for GC reactions, as WT and Il1r1-/- mice showed equivalent phenotypes, suggesting that GC IL-1 is normally restrained by IL-1R2. Fascinatingly, germline Il1r2-/- mice did not show this phenotype, but conditional Il1r2 deletion in adulthood recapitulated it, implying that compensation during development counteracts IL-1R2 loss. Finally, patients with ulcerative colitis or Crohn's disease had lower serum IL-1R2. All together, we show that IL-1R2 controls important aspects of innate and adaptive immunity and that IL-1R2 level may contribute to human disease propensity and/or progression.


Subject(s)
Receptors, Interleukin-1 Type II , T-Lymphocytes, Helper-Inducer , Humans , Animals , Mice , Germinal Center , Inflammation , Interleukin-1
2.
Cardiovasc Res ; 119(12): 2179-2189, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37309666

ABSTRACT

AIMS: Atherosclerosis is driven by multiple processes across multiple body systems. For example, the innate immune system drives both atherogenesis and plaque rupture via inflammation, while coronary artery-occluding thrombi formed by the coagulation system cause myocardial infarction and death. However, the interplay between these systems during atherogenesis is understudied. We recently showed that coagulation and immunity are fundamentally linked by the activation of interleukin-1α (IL-1α) by thrombin, and generated a novel knock-in mouse in which thrombin cannot activate endogenous IL-1α [IL-1α thrombin mutant (IL-1αTM)]. METHODS AND RESULTS: Here, we show significantly reduced atherosclerotic plaque formation in IL-1αTM/Apoe-/- mice compared with Apoe-/- and reduced T-cell infiltration. However, IL-1αTM/Apoe-/- plaques have reduced vascular smooth muscle cells, collagen, and fibrous caps, indicative of a more unstable phenotype. Interestingly, the reduced atherogenesis seen with thrombin inhibition was absent in IL-1αTM/Apoe-/- mice, suggesting that thrombin inhibitors can affect atherosclerosis via reduced IL-1α activation. Finally, bone marrow chimeras show that thrombin-activated IL-1α is derived from both vessel wall and myeloid cells. CONCLUSIONS: Together, we reveal that the atherogenic effect of ongoing coagulation is, in part, mediated via thrombin cleavage of IL-1α. This not only highlights the importance of interplay between systems during disease and the potential for therapeutically targeting IL-1α and/or thrombin, but also forewarns that IL-1 may have a role in plaque stabilization.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Thrombin , Animals , Mice , Apolipoproteins E/genetics , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Cell Proliferation , Collagen/metabolism , Interleukin-1alpha/genetics , Interleukin-1alpha/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Knockout, ApoE , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Plaque, Atherosclerotic/metabolism , Thrombin/metabolism
3.
Eur J Immunol ; 50(11): 1663-1675, 2020 11.
Article in English | MEDLINE | ID: mdl-32447774

ABSTRACT

IL-1 is a powerful cytokine that drives inflammation and modulates adaptive immunity. Both IL-1α and IL-1ß are translated as proforms that require cleavage for full cytokine activity and release, while IL-1α is reported to occur as an alternative plasma membrane-associated form on many cell types. However, the existence of cell surface IL-1α (csIL-1α) is contested, how IL-1α tethers to the membrane is unknown, and signaling pathways controlling trafficking are not specified. Using a robust and fully validated system, we show that macrophages present bona fide csIL-1α after ligation of TLRs. Pro-IL-1α tethers to the plasma membrane in part through IL-1R2 or via association with a glycosylphosphatidylinositol-anchored protein, and can be cleaved, activated, and released by proteases. csIL-1α requires de novo protein synthesis and its trafficking to the plasma membrane is exquisitely sensitive to inhibition by IFN-γ, independent of expression level. We also reveal how prior csIL-1α detection could occur through inadvertent cell permeabilisation, and that senescent cells do not drive the senescent-associated secretory phenotype via csIL-1α, but rather via soluble IL-1α. We believe these data are important for determining the local or systemic context in which IL-1α can contribute to disease and/or physiological processes.


Subject(s)
Cell Membrane/metabolism , Glycosylphosphatidylinositols/metabolism , Interferon-gamma/metabolism , Interleukin-1alpha/metabolism , Receptors, Interleukin-1 Type II/metabolism , Animals , Humans , Inflammation/metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Protein Binding/physiology , Protein Transport/physiology
4.
Immunity ; 50(4): 1033-1042.e6, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30926232

ABSTRACT

Ancient organisms have a combined coagulation and immune system, and although links between inflammation and hemostasis exist in mammals, they are indirect and slower to act. Here we investigated direct links between mammalian immune and coagulation systems by examining cytokine proproteins for potential thrombin protease consensus sites. We found that interleukin (IL)-1α is directly activated by thrombin. Thrombin cleaved pro-IL-1α at a site perfectly conserved across disparate species, indicating functional importance. Surface pro-IL-1α on macrophages and activated platelets was cleaved and activated by thrombin, while tissue factor, a potent thrombin activator, colocalized with pro-IL-1α in the epidermis. Mice bearing a mutation in the IL-1α thrombin cleavage site (R114Q) exhibited defects in efficient wound healing and rapid thrombopoiesis after acute platelet loss. Thrombin-cleaved IL-1α was detected in humans during sepsis, pointing to the relevance of this pathway for normal physiology and the pathogenesis of inflammatory and thrombotic diseases.


Subject(s)
Blood Coagulation/physiology , Immune System/immunology , Interleukin-1alpha/physiology , Thrombin/physiology , Adaptive Immunity , Amino Acid Sequence , Animals , Blood Platelets/metabolism , Humans , Immunity, Innate , Interleukin-1alpha/genetics , Interleukin-1alpha/immunology , Keratinocytes/metabolism , Macrophages/metabolism , Mammals/immunology , Mice , Protein Precursors/metabolism , Selection, Genetic , Sepsis/immunology , Sequence Alignment , Sequence Homology, Amino Acid , Thrombopoiesis/immunology , Wound Healing/immunology
5.
Nat Commun ; 8: 15781, 2017 06 07.
Article in English | MEDLINE | ID: mdl-28589929

ABSTRACT

Type-2 innate lymphoid cells (ILC2) are a prominent source of type II cytokines and are found constitutively at mucosal surfaces and in visceral adipose tissue. Despite their role in limiting obesity, how ILC2s respond to high fat feeding is poorly understood, and their direct influence on the development of atherosclerosis has not been explored. Here, we show that ILC2 are present in para-aortic adipose tissue and lymph nodes and display an inflammatory-like phenotype atypical of adipose resident ILC2. High fat feeding alters both the number of ILC2 and their type II cytokine production. Selective genetic ablation of ILC2 in Ldlr-/- mice accelerates the development of atherosclerosis, which is prevented by reconstitution with wild type but not Il5-/- or Il13-/- ILC2. We conclude that ILC2 represent a major innate cell source of IL-5 and IL-13 required for mounting atheroprotective immunity, which can be altered by high fat diet.


Subject(s)
Atherosclerosis/pathology , Lymphocytes/pathology , Adipose Tissue, White/pathology , Animals , Aorta/metabolism , Aorta/pathology , Atherosclerosis/etiology , Bone Marrow Transplantation , Cytokines/metabolism , Diet, High-Fat/adverse effects , Female , Interleukin-13/metabolism , Interleukin-5/metabolism , Lymphocytes/metabolism , Mice, Knockout, ApoE , Mice, Mutant Strains , Plaque, Atherosclerotic/pathology
6.
Nat Commun ; 8: 15986, 2017 06 28.
Article in English | MEDLINE | ID: mdl-28656979

ABSTRACT

Excessive activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome is involved in many chronic inflammatory diseases, including cardiovascular and Alzheimer's disease. Here we show that microtubule-affinity regulating kinase 4 (MARK4) binds to NLRP3 and drives it to the microtubule-organizing centre, enabling the formation of one large inflammasome speck complex within a single cell. MARK4 knockdown or knockout, or disruption of MARK4-NLRP3 interaction, impairs NLRP3 spatial arrangement and limits inflammasome activation. Our results demonstrate how an evolutionarily conserved protein involved in the regulation of microtubule dynamics orchestrates NLRP3 inflammasome activation by controlling its transport to optimal activation sites, and identify a targetable function for MARK4 in the control of innate immunity.


Subject(s)
Inflammasomes/metabolism , Macrophages/enzymology , Microtubules/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Humans , Interleukin-1beta/metabolism , Male , Mice , Microtubule-Organizing Center , Primary Cell Culture
7.
Nat Med ; 23(5): 601-610, 2017 May.
Article in English | MEDLINE | ID: mdl-28414328

ABSTRACT

Splenic marginal zone B (MZB) cells, positioned at the interface between circulating blood and lymphoid tissue, detect and respond to blood-borne antigens. Here we show that MZB cells in mice activate a homeostatic program in response to a high-cholesterol diet (HCD) and regulate both the differentiation and accumulation of T follicular helper (TFH) cells. Feeding mice an HCD resulted in upregulated MZB cell surface expression of the immunoregulatory ligand PDL1 in an ATF3-dependent manner and increased the interaction between MZB cells and pre-TFH cells, leading to PDL1-mediated suppression of TFH cell motility, alteration of TFH cell differentiation, reduced TFH abundance and suppression of the proatherogenic TFH response. Our findings reveal a previously unsuspected role for MZB cells in controlling the TFH-germinal center response to a cholesterol-rich diet and uncover a PDL1-dependent mechanism through which MZB cells use their innate immune properties to limit an exaggerated adaptive immune response.


Subject(s)
B-Lymphocytes/immunology , B7-H1 Antigen/immunology , Cholesterol, Dietary/immunology , Diet , Germinal Center/immunology , Lymphoid Tissue/immunology , T-Lymphocytes, Helper-Inducer/immunology , Activating Transcription Factor 3/genetics , Activating Transcription Factor 3/immunology , Animals , Atherosclerosis/immunology , Cell Differentiation/immunology , Cell Movement/immunology , Cholesterol/blood , Cholesterol, HDL/blood , Flow Cytometry , Homeostasis , Humans , Lymphocyte Count , Lymphoid Tissue/cytology , Mice , Plaque, Atherosclerotic/blood , Plaque, Atherosclerotic/immunology , Plaque, Atherosclerotic/pathology , Reverse Transcriptase Polymerase Chain Reaction , Spleen/cytology , Spleen/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...