Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(10): 7229-7233, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38419678

ABSTRACT

We successfully prepared an Fe- and Li-containing polysulfide positive electrode material (Li8FeS5-Li2FeS2 composite) that shows a high specific capacity (>500 mA h g-1) with improved rate capability in all-solid-state cells. High-resolution TEM analysis indicated the coexistence of small crystallites of high-conductivity Li2FeS2 and FeS, as well as low-crystallinity Li2S, in the composite, and this microstructure is responsible for the improved battery performance.

2.
Phys Chem Chem Phys ; 24(45): 28055-28068, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36377526

ABSTRACT

Spinel-type titanate is an important material already being used as a stable anode for Li-ion batteries. In addition, spinel titanate shows superconducting properties upon tuning the amount of Li+-doping; hence, research on magnetic and superconducting materials has been conducted. However, it is believed that only the tiny Li+ monocation can occupy the 8a sites due to its small voids and the charge valence with Ti cations. In recent years, new spinel-type titanium oxides have been discovered, in which 8a sites are occupied by Na+ or Ag+. Although the application of these new compounds to catalyst and electrode materials has been attempted, the effect of 8a site monocations on the physical properties of spinel-type titanium oxide is unclear. In this study, to systematise the effects of 8a-site monocations on the Ti-O framework, theoretical calculations based on density functional theory (DFT), such as GGA, GGA+U, and hybrid-DFT, were performed for the electronic structures and geometric stabilities of four spinel-titanium oxides: LTO (8a sites occupied by Li+), NTO (8a sites occupied by Na+), CTO (8a sites occupied by Cu+), and ATO (8a sites occupied by Ag+). Furthermore, to verify the effect of the partial substitution, Li+, Na+, Cu+, and Ag+ doping of LTO, NTO, CTO, and ATO was also investigated. Throughout these calculations, the performance of spinel-type titanates can be categorised by (1) the magnitude of O-displacement and (2) the orbital correlation between the Ti-O framework and the 8a site cations. By appropriately selecting cations, the spinel titanates can be applied to battery materials, catalysts, optical materials, photocatalysts, and precursors to these materials.

3.
ACS Appl Mater Interfaces ; 14(24): 28370-28377, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35679602

ABSTRACT

The features of the electrode surface film during Li-metal deposition and dissolution cycles are essential for understanding the mechanism of the negative electrode reaction in Li-metal battery cells. The physical and chemical property changes of the interface during the initial stages of the reaction should be investigated under operando conditions. In this study, we focused on the changes in the optical properties of the electrode surface film of the negative electrode of a Li-metal battery. Cu-based electrochemical surface plasmon resonance spectroscopy (EC-SPR) was applied because of its high sensitivity to optical phenomena on the electrode surface and its stability against Li-metal deposition. The feature of SPR reflectance dip depends on the optical properties of the electrode surface; namely, the wavelength and depth of the reflectance dip directly connected the refractive index and extinction coefficient (color of electrode surface film), which was confirmed by reflectance simulation. In the operando EC-SPR experiment, various changes in optical properties were clearly observed during the cycles. In particular, the change in the extinction coefficient was more remarkable at the second process than the first process of Li-metal deposition. By electrochemical quartz-crystal microbalance (EQCM) measurements, surface film formation was confirmed during the first Li-metal deposition process. The remarkable change in the extinction coefficient is based on the color change of the surface film, which is caused by the chemical condition change during Li-metal deposition cycles.

4.
Inorg Chem ; 60(23): 17715-17721, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34752082

ABSTRACT

The stability of a zirconium (Zr)-substituted face-centered cubic (FCC) yttrium (Y) hydride (Y1-xZrx hydride) phase was investigated experimentally and theoretically. Two possible sites for hydrogen atoms exist in the FCC structure, namely, T- and O-sites, where hydrogen is present at the center of the tetrahedron and the octahedron composed of Y and/or Zr metals. The P-C isotherms revealed that the hydrogen content per metal (H/M) with 33% Zr-substituted YH3-δ was 2.2-2.3, which was lower than the expected value calculated from the starting composition of YH3-33% ZrH2 (Y0.67Zr0.33H2.67, H/M = 2.67). Hydrogen at the O-site in Y1-xZrx hydride mainly reacted during hydrogen desorption/absorption. On the basis of theoretical analyses, the hydrogen atoms do not occupy the center of the octahedron, when at least two of the six vertices of the octahedron were composed of Zr. The O-sites, where more than two Zr atoms coordinate, nonlinearly increased with the Zr content, and when the Zr content was >50%, almost no hydrogen atoms occupy the O-sites. The theoretical discussion supported the experimental results, and the Zr substitution was confirmed to reduce the occupancy of H at the O-site in the FCC YH3 significantly.

5.
J Am Chem Soc ; 143(29): 11160-11170, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34260226

ABSTRACT

The initial process of Li-metal electrodeposition on the negative electrode surface determines the charging performance of Li-metal secondary batteries. However, minute depositions or the early processes of nucleation and growth of Li metal are generally difficult to detect under operando conditions. In this study, we propose an optical diagnostic approach to address these challenges. Surface plasmon resonance (SPR) spectroscopy coupled with electrochemical operation is a promising technique that enables the ultrasensitive detection of the initial stage of Li-metal electrodeposition. The SPR is excited in a thin copper film deposited on a glass substrate, which also serves as a current collector enabling electrochemical Li-metal deposition. For a propylene carbonate (PC)-based Li-ion battery electrolyte, under both cyclic voltammetry and constant-current operation, Li-metal deposition is readily detected by changes in the SPR absorption dip in the reflectance spectrum. Electrochemical SPR is highly sensitive to metal deposition, with a demonstrated capability of detecting an average thickness of approximately 0.1 nm, corresponding to a few atomic layers of Li. To identify the growth mechanism, the SPR reflectance spectra of various possible Li-metal deposition processes were simulated. Comparison of the simulated spectra with the experimental data found good agreement with the well-known nucleation and growth model for Li-metal deposition from PC-based electrolytes. The demonstrated operando electrochemical SPR measurement should be a valuable tool for basic research on the initial Li-metal deposition process.

6.
Phys Chem Chem Phys ; 23(14): 8868-8879, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33876046

ABSTRACT

NaTaO3, a semiconductor with a perovskite structure, has long been known as a highly active photocatalyst for overall water splitting when appropriately doped with La cations. A profound understanding of the surface feature and why and how it may control the water splitting activity is critical because redox reactions take place at the surface. One surface feature characteristic of La-doped NaTaO3 is a La-rich layer (shell) capping La-poor bulk (core). In this study, we investigate the role of the shell in core-shell-structured La-doped NaTaO3 through systematic chemical etching with an aqueous HF solution. We find that the La-rich shell plays a role in electron-hole recombination, electron mobility and water splitting activity. The shallow electron traps populating the La-rich shell trap the photoexcited electrons, decreasing their mobility. The shallowly trapped electrons remain reactive and are readily available on the surface to be extracted by the cocatalysts for the reduction reaction evolving H2. The presently employed chemical etching method also confirms the presence of a La concentration gradient in the core that regulates the steady-state electron population and water splitting activity. Here, we successfully reveal the nanoarchitecture-photoactivity relationship of core-shell-structured La-doped NaTaO3 that thereby allows tuning of the surface features and spatial distribution of dopants to increase the concentration of photoexcited electrons and therefore the water splitting activity. By recognizing the key factors that control the photocatalytic properties of a highly active catalyst, we can then devise proper strategies to design new photocatalyst materials with breakthrough performances.

7.
Sci Bull (Beijing) ; 66(2): 170-178, 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-36654225

ABSTRACT

The hydrogen evolution reaction (HER) as a fundamental process in electrocatalysis plays a significant role in clean energy technologies. For an energy-efficient HER, it demands an effective, durable, and low-cost catalyst to trigger proton reduction with minimal overpotential and fast kinetics. Here, we successfully fabricate a highly efficient HER catalyst of N-C/Co/Mo2C holey nanorods with Co/ß-Mo2C nanoparticles uniformly embedded in nitrogen-doped carbon (N-C/Co/Mo2C) by pyrolyzing the molybdate-coordinated zeolitic imidazolate framework (ZIF-67/MoO42-) holey nanorods, which result from the reaction between CoMoO4 and MeIM in a methanol/water/triethylamine mixed solution. The uniform distribution of MoO42- in the ZIF-67/MoO42- enables Co/ß-Mo2C nanoparticles to be well-distributed within nitrogen-doped carbon holey nanorods. This synthetic strategy endows the N-C/Co/Mo2C catalyst with uniformly decorated bimetal, thus attaining excellent HER electrocatalytic activities with a small overpotential of 142.0 mV at 10 mA cm-2 and superior stability in 1.0 mol L-1 KOH aqueous solution.

8.
Phys Chem Chem Phys ; 22(34): 19178-19187, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32812586

ABSTRACT

Strontium titanate, SrTiO3, with the perovskite ABO3 structure is known as one of the most efficient photocatalyst materials for the overall water splitting reaction. Doping with appropriate metal cations at the A site or at the B site substantially increases the quantum yield to split water into H2 and O2. The site occupied by the guest dopant in the SrTiO3 host thus plays a key role in dictating the water splitting activity. However, little is known about the detailed structure of the dopant site in the host lattice. In this study, the local structure of In3+ cations, which were shown to improve the water splitting activity of SrTiO3, is investigated with X-ray absorption fine structure spectroscopy and density functional theory (DFT) calculations. The In3+ cations exclusively substitute for Ti4+ cations at the B site to form InO6 octahedra. Further optical experiments using UV-Vis diffuse reflectance spectroscopy and DFT calculations of the density of states indicate that the substitution of In3+ for Ti4+ does not alter the band structure and bandgap energy (remaining at 3.2 eV). The mechanism underlying the increased water splitting activity is discussed in relation to occupation of the B site by In3+ cations.

9.
Langmuir ; 36(33): 9701-9708, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32790312

ABSTRACT

The physical properties of an interfacial electrolyte near the electrode surface essentially affect the electrochemical behavior of the Li metal negative electrode. Therefore, probing the interfacial electrolyte under in-operando conditions is highly desired to determine the true electrochemical interface and electrode performance. In this study, dissipation recording by force-distance analysis based on atomic force microscopy was applied for the first time to address these challenges and a notable performance was observed during this study. The energy dissipation of the cantilever during the force curve motion is an important indicator to evaluate the conditions of the interfacial electrolyte because the solution drag is based on the physical properties of the electrolyte. In the in-operando electrochemical experiments of the Li metal electrode with a tetraglyme-based electrolyte, the dissipation energy clearly changed corresponding to the charge-discharge reaction. Recording the dissipation based on the force-distance analysis coupled with electrochemical operation improved the understanding of the actual characteristics of the electrochemical interface based on the direct measurement of the physical properties.

10.
Microscopy (Oxf) ; 69(4): 227-233, 2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32181796

ABSTRACT

Investigation of solid electrolyte interphases (SEIs) on negative electrode surfaces is essential to improve the stable charge-discharge performance of rechargeable lithium-air batteries (Li-O2 batteries). In this study, a direct investigation of SEI films is conducted using analytical transmission electron microscopy (TEM). A thin Cu specimen is prefabricated for TEM observation and is utilised as a model substrate for SEI formation. The electrochemical cell constructed using dissolved oxygen in the electrolyte exhibits a greater electrochemical overpotential during the Li-metal deposition process than that constructed with a pristine electrolyte. This suggests that different electrochemical passivation features occur in each different electrochemical cell. TEM observation confirms that the surface film formed by O2 dissolute electrolyte is a polycrystalline Li2O film with a thickness of ~5 nm, whereas the film formed by the pristine electrolyte is organic-based, amorphous-like and 20-50 nm thick. The dissolved oxygen molecules are more easily reduced than the components of the electrolyte, leading to the formation of Li2O as a stable passivation SEI film, which is expected to exhibit good charge-discharge features during the operation of the Li-O2 battery.

11.
ACS Appl Mater Interfaces ; 12(8): 9322-9331, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32026681

ABSTRACT

Sodium titanium oxide with a spinel-type structure is suitable for the stable sodium-intercalation host for the negative electrode of sodium-ion batteries, such as the spinel-type lithium titanium oxide (Li4Ti5O12, LTO) material for lithium-ion batteries. Recently, this has been partly discovered as the Na3LiTi5O12 (NTO) phase in the LTO particle. However, the single-phase NTO material has never been obtained, preventing accurate material characterizations and applications. Here, we successfully realized the NTO material with the single-phase by the chemical sodium insertion-extraction process. The chemical sodium-inserted LTO material is well converted to the pure NTO phase in the single particle level, via following chemical oxidation by water. The purified material was about 97 mol % of NTO as the single-phase spinel structure with a = 8.746 Å. The basic lattice framework of the prepared NTO was confirmed to be the same as that of the LTO. The single-phase NTO electrode shows 0.8 V versus Na+/Na of the Na-insertion and extraction potential, and 99.4% of Na-insertion capacity with 99.7% of Coulombic efficiency during 200 cycles of the Na-ion half-cell experiment. Further, the Na2Fe2(SO4)3/NTO full-cell shows 3 V-class stable charge-discharge character during 100 cycles. This excellent stability of Na-insertion and extraction properties of single-phase NTO extends the range of constructing safe and stable high-voltage oxide-based sodium-ion battery cells for practical use.

12.
RSC Adv ; 10(55): 33509-33516, 2020 Sep 07.
Article in English | MEDLINE | ID: mdl-35515046

ABSTRACT

Li3(Li,Ti5)O12 (LTO) is a stable and safe negative electrode material for Li-ion batteries, and its Na substitute Na3(Li,Ti5)O12 (NTO) is a counterpart for the Na-ion battery. In LTO and NTO, a sixth of the Ti-sites (16d) in the spinel framework are replaced by Li: Li mixing in the 16d sites. For conducting theoretical studies on these materials, e.g., density functional theory (DFT) calculations, one has to confront the astronomical number of combinations of Li distribution in 16d sites to construct model structures, of which the size is sufficiently large to represent the bulk material properties. Only a limited number of models, whose structures are a priori specified by "researcher intuition," have been examined thus far, and how Li-mixing determines the material stability has yet to be clarified. Herein, we statistically analyzed the DFT total energy of more than 2 × 104 model structures of LTO and NTO that were extracted from the 4 × 108 possible combinations of Li-mixing with computer-aided symmetry analysis and an automated model building system. The local energy analysis further revealed the local stability/instability of each structure. We found that LTO and NTO stability can be well explained by the apparent coulombic repulsion between Li+ in the 16d sites as if they were placed in a matrix of dielectric constants of 1.92 and 2.04 for LTO and NTO, respectively. That is, the sum of the inverse of the Li-Li distance (S) serves as a good descriptor in predicting the stability of these materials. The extent to which the O2- anions are displaced from the Wyckoff position (32e) is considered to differentiate NTO from LTO. However, the electronic structure of NTO does not significantly differ from that of LTO unless S exceeds a certain limit. These results suggest that the spinel framework tolerates the structural instability and variety to some extent, which is important in constructing a spinel structure with the mixing of other cations, thereby replacing the rare element Li.

13.
Langmuir ; 35(26): 8726-8731, 2019 Jul 02.
Article in English | MEDLINE | ID: mdl-31244261

ABSTRACT

Imaging of the Li-insertion/extraction [Li-in/out] interface of the electrode materials of Li-ion batteries is essential to reveal their bulk mechanism of electrochemical reaction and phase behavior in the crystal. Generally, the material properties significantly change at this interface. Therefore, direct probing of the changing properties is a promising approach to reliably investigate the Li-in/out interface in the bulk crystal of electrode materials. In this study, we investigated the change in electron conductivity of rutile-TiO2 with Li-insertion and extraction, as a model for the electrochemical interface of a bulk crystal of electrode material. In addition, we probed the interface using logarithm contact resistance [log R (Ω)] imaging via scanning spreading resistance microscopy (SSRM). A distinct Li-in/out interface on the rutile-TiO2(001) wafer was observed using this technique. The imaging resolution of this region was estimated to be approximately 40-50 nm in SSRM images, which was two to three times higher than the resolution of the topographic image (100-150 nm), which was restricted to the curvature radius of the SSRM probe tip. A high spatial resolution was obtained via SSRM imaging because this approach is not influenced by the geometric effects of the surface. This result demonstrated the potential of SSRM imaging for the study of the Li-in/out interface.

14.
J Am Chem Soc ; 141(19): 7906-7916, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31042369

ABSTRACT

Micro-/nanocapsules have received substantial attention due to various potential applications for storage, catalysis, and drug delivery. However, their conventional enclosed non-/polycrystalline walls pose huge obstacles for rapid loading and mass diffusion. Here, we present a new single-crystal capsular-MOF with openings on the wall, which is carefully designed at the molecular level and constructed from a crystal-structure transformation. This rare open-capsule MOF can easily load the largest amounts of sulfur and iodine among known MOFs. In addition, derived from capsular-MOF and melamine through pyrolysis-phosphidation, we fabricated a nitrogen-doped capsular carbon-based framework with iron-nickel phosphide nanoparticles immobilized on capsular carbons interconnected by plentiful carbon nanotubes. Benefiting from synergistic effects between the carbon framework and highly surface-exposed phosphide sites, the material exhibits efficient multifunctional electrocatalysis for oxygen evolution, hydrogen evolution, and oxygen reduction, achieving well-qualified assemblies of an overall water splitting (low potential of 1.59 V at 10 mA·cm-2) and a rechargeable Zn-air battery (high peak power density of 250 mW·cm-2 and excellent stability for 500 h), which afford remarkably practical prospects over previously known electrocatalysts.

15.
Adv Mater ; 31(24): e1900440, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31034119

ABSTRACT

Hierarchical superstructures in nano/microsize have attracted great attention owing to their wide potential applications. Herein, a self-templated strategy is presented for the synthesis of a spherical superstructure of carbon nanorods (SS-CNR) in micrometers through the morphology-preserved thermal transformation of a spherical superstructure of metal-organic framework nanorods (SS-MOFNR). The self-ordered SS-MOFNR with a chestnut-shell-like superstructure composed of 1D MOF nanorods on the shell is synthesized by a hydrothermal transformation process from crystalline MOF nanoparticles. After carbonization in argon, the hierarchical SS-MOFNR transforms into SS-CNR, which preserves the original chestnut-shell-like superstructure with 1D porous carbon nanorods on the shell. Taking the advantage of this functional superstructure, SS-CNR immobilized with ultrafine palladium (Pd) nanoparticles (Pd@SS-CNR) exhibits excellent catalytic activity for formic acid dehydrogenation. This synthetic strategy provides a facile method to synthesize uniform spherical superstructures constructed from 1D MOF nanorods or carbon nanorods for applications in catalysis and energy storage.

16.
Chem Asian J ; 14(20): 3583-3589, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-30964963

ABSTRACT

Hierarchically porous carbon materials with high surface areas are promising candidates for energy storage and conversion. Herein, the facile synthesis of hierarchically porous carbons through the calcination of metal-organic framework (MOF)/chitosan composites is reported. The effects of the chitosan (CS) additive on the pore structure of the resultant carbons are discussed. The corresponding MOF/chitosan precursors could be readily converted into hierarchically porous carbons (NPC-V, V=1, 2, 4, and 6) with much higher ratios of meso-/macropore volume to micropore volume (Vmeso-macro /Vmicro ). The derived carbon NPC-2 with the high ratio of Vmeso-macro /Vmicro =1.47 demonstrates a high specific surface area of 2375 m2 g-1 , and a high pore volume of 2.49 cm3 g-1 , as well as a high graphitization degree, in comparison to its counterpart (NPC) without chitosan addition. These excellent features are favorable for rapid ion diffusion/transport, endowing NPC-2 with enhanced electrochemical behavior as supercapacitor electrodes in a symmetric electrode system, corresponding to a high specific capacitance of 199.9 F g-1 in the aqueous electrolyte and good rate capability. Good cycling stability is also observed after 10 000 cycles.

17.
Langmuir ; 33(49): 13923-13928, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29144143

ABSTRACT

To develop safe and low-cost Li-ion batteries (LIBs), recently, an aqueous-based electrolyte so-called "hydrate-melt" (HDM) electrolyte is proposed. Li4Ti5O12 is a promising negative electrode material for a LIB with such a HDM electrolyte because of its unexpected reversible Li insertion and extraction properties without usually inevitable water reduction. The solid-electrolyte interphase formation is one of the reasons for this stable reaction, although a detailed analysis is not yet performed. Here, a Li4Ti5O12 electrode surface reacted in a HDM electrolyte is investigated by scanning electron microscopy-based analysis. Surface reaction products are clearly observed on the Li4Ti5O12 surface after the Li insertion reaction in a HDM electrolyte. Energy-dispersive X-ray spectroscopy and Auger electron spectroscopy indicated that the products do not contain any components originated from Li salts, whereas anion-derived passivation films seem to cover a bare surface below the products. Further, the surface products are identified as Li2O by the feature of Li-K-edge reflection electron energy-loss spectrum. The Li2O formation would be one of the key issues for stable Li insertion and extraction of a Li4Ti5O12 electrode in a HDM electrolyte.

18.
Phys Chem Chem Phys ; 19(18): 11581-11587, 2017 May 10.
Article in English | MEDLINE | ID: mdl-28429025

ABSTRACT

The development of a nanoscale battery reaction in an electrode material associated with in situ microscopic observation is significant to an understanding of the solid-state mechanism of a battery reaction. With a Li4Ti5O12 (LTO) crystal as the negative electrode of a Li-ion battery (LIB), we show that a nanoscale-controlled Li-insertion reaction can be produced by electron beam irradiation with scanning transmission electron microscopy (STEM). A selected area in a Li2O-coated thin LTO crystal was irradiated by the electron probe of STEM with a high beam intensity of 2.5 × 107 (electrons per nm2). Electron energy-loss spectroscopy (EELS) revealed that significant changes in the chemical feature occurred only in the high-dose irradiation area in the LTO specimen. The features of Li-K, Ti-L and O-K spectra in that area were completely equal to those of a Li7Ti5O12 (Li-LTO) phase, as an electrochemically Li-inserted LTO phase, in contrast to usual LTO-like spectra in the region surrounding the specimen. For a pristine LTO specimen without Li2O coating, no Li-insertion reaction was observed under the same irradiation conditions. The high-dose electron beam seems to induce the dissociation of Li2O, providing Li ions and electrons, and the rapid and directional growth of a Li-LTO phase along the electron beam in the LTO specimen, forming a nanoscale steep interface with the surrounding LTO phase. The present phenomenon is a new type of electron beam assisted chemical reaction in a solid state, and could have a large impact on the science and technology of battery materials.

19.
Small ; 13(16)2017 04.
Article in English | MEDLINE | ID: mdl-28151583

ABSTRACT

Sub-nanometer Pt@Rh nanoparticles highly dispersed on MIL-125-derived porous TiO2 nanoplates are successfully prepared for the first time by a photochemical route, where the porous TiO2 nanoplates with a relatively high specific surface area play a dual role as both effective photoreductant and catalyst support. The resulting Pt@Rh/p-TiO2 can be utilized as a highly active catalyst.

20.
Langmuir ; 33(8): 1861-1866, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28170270

ABSTRACT

Nanoscale investigations of Li deposition on the surface of a Li electrode are crucial to understand the initial mechanism of dendrite growth in rechargeable Li-metal batteries during charging. Here, we studied the initial Li deposition and related protrusion growth processes at the surface of the Li electrode with atomic force microscopy (AFM) in a galvanostatic experiment under operand condition. A flat Li-metal surface prepared by precision cutting a Li-metal wire in electrolyte solution (100 mM LiPF6 in propylene carbonate) was observed with peak-force-tapping mode AFM under an inert atmosphere. During the electrochemical deposition process of Li, protrusions were observed to grow selectively. An adhesion image acquired with mechanical mapping showed a specifically small contrast on the surface of growing protrusions, suggesting that the heterogeneous condition of the surface of the Li electrode affects the growth of Li dendrites. We propose that a modification of the battery cell design resulting in a uniform solid-liquid interface can contribute to the homogeneous deposition of Li at the Li electrode during charging. Further, the mechanical mapping of Li surfaces with operand AFM has proven to play a significant role in the understanding of basic mechanisms of the behavior of the Li electrode.

SELECTION OF CITATIONS
SEARCH DETAIL
...