Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38664021

ABSTRACT

Mitochondrial transcription factor A, TFAM, is essential for mitochondrial function. We examined the effects of overexpressing the TFAM gene in mice. Two types of transgenic mice were created: TFAM heterozygous (TFAM Tg) and homozygous (TFAM Tg/Tg) mice. TFAM Tg/Tg mice were smaller and leaner notably with longer lifespans. In skeletal muscle, TFAM overexpression changed gene and protein expression in mitochondrial respiratory chain complexes, with down-regulation in complexes 1, 3, and 4 and up-regulation in complexes 2 and 5. The iMPAQT analysis combined with metabolomics was able to clearly separate the metabolomic features of the three types of mice, with increased degradation of fatty acids and branched-chain amino acids and decreased glycolysis in homozygotes. Consistent with these observations, comprehensive gene expression analysis revealed signs of mitochondrial stress, with elevation of genes associated with the integrated and mitochondrial stress responses, including Atf4, Fgf21, and Gdf15. These found that mitohormesis develops and metabolic shifts in skeletal muscle occur as an adaptive strategy.


Subject(s)
DNA-Binding Proteins , High Mobility Group Proteins , Longevity , Mice, Transgenic , Mitochondrial Proteins , Muscle, Skeletal , Transcription Factors , Animals , Mice , Muscle, Skeletal/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Longevity/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondria/metabolism , Mitochondria/genetics , Male , Metabolomics/methods , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , Gene Expression Regulation
2.
Cell Rep ; 42(8): 112899, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37531252

ABSTRACT

Small cell lung cancer (SCLC) is one of the deadliest human cancers, with a 5-year survival rate of ∼7%. Here, we performed a targeted proteomics analysis of human SCLC samples and thereby identified hypoxanthine phosphoribosyltransferase 1 (HPRT1) in the salvage purine synthesis pathway as a factor that contributes to SCLC malignancy by promoting cell survival in a glutamine-starved environment. Inhibition of HPRT1 by 6-mercaptopurine (6-MP) in combination with methotrexate (MTX), which blocks the de novo purine synthesis pathway, attenuated the growth of SCLC in mouse xenograft models. Moreover, modulation of host glutamine anabolism with the glutamine synthetase inhibitor methionine sulfoximine (MSO) in combination with 6-MP and MTX treatment resulted in marked tumor suppression and prolongation of host survival. Our results thus suggest that modulation of host glutamine anabolism combined with simultaneous inhibition of the de novo and salvage purine synthesis pathways may be of therapeutic benefit for SCLC.

4.
J Vis Exp ; (151)2019 09 27.
Article in English | MEDLINE | ID: mdl-31609319

ABSTRACT

Itch was defined as "an unpleasant cutaneous sensation that provokes a desire to scratch" by Rothman in 1941. In mouse models, scratch bouts are typically counted to evaluate itch induced by pruritogens. However, previous reports have shown that algesic substances also induce scratching behaviors in a mouse neck injection model, which is the most common test used for scratching behaviors. This finding makes it difficult to study itch in mice.  In contrast, capsaicin, a common algogen, reduced scratching behaviors in some neck injection experiments. Therefore, the effect of pain on scratching behaviors remains unclear. It is thus necessary to develop a method to concurrently investigate itch and pain sensation using behavioral tests. Here, a cheek injection model is introduced which can be used to simultaneously measure pain- and itch-related behaviors. In this model, pruritogens induce scratching behaviors while algesic substances induce wiping behaviors. Using this model, lysophosphatidic acid (LPA), an itch mediator found in cholestatic patients with itch, is shown to exclusively induce itch but not pain. However, in mouse models, LPA has been reported to be both a pruritogen and an algogen. Investigation into the effects of LPA in a mouse cheek injection model showed that LPA only induced scratching, but not wiping behaviors. This indicates that LPA acts as a pruritogen similarly in mice and humans, and demonstrates the utility of a cheek injection model for itch research.


Subject(s)
Behavior, Animal/drug effects , Capsaicin/administration & dosage , Cheek , Lysophospholipids/toxicity , Pain/psychology , Pruritus/psychology , Animals , Antipruritics/administration & dosage , Disease Models, Animal , Injections , Male , Mice , Mice, Inbred C57BL , Pain/chemically induced , Pain/drug therapy , Pain/pathology , Pruritus/chemically induced , Pruritus/drug therapy , Pruritus/pathology
5.
Cancer Med ; 8(3): 1110-1123, 2019 03.
Article in English | MEDLINE | ID: mdl-30623593

ABSTRACT

African American men face a stark prostate cancer (PCa)-related health disparity, with the highest incidence and mortality rates compared to other races. Additional and innovative measures are warranted to reduce this health disparity. Here, we focused on the identification of a novel serum exosome-based "protein signature" for potential use in the early detection and better prognosis of PCa in African American men. Nanoparticle tracking analyses showed that compared to healthy individuals, exosome concentration (number/ml) was increased by ~3.2-fold (P Ë‚ 0.05) in the sera of African American men with PCa. Mass spectrometry-based proteomic analysis of serum exosomes identified seven unique and fifty-five overlapping proteins (up- or downregulated) in African Americans with PCa compared to healthy African Americans. Furthermore, ingenuity pathway analyses identified the inflammatory acute-phase response signaling as the top pathway associated with proteins loaded in exosomes from African American PCa patients. Interestingly, African American PCa E006AA-hT cells secreted exosomes strongly induced a proinflammatory M2-phenotype in macrophages and showed calcium response on sensory neurons, suggesting a neuroinflammatory response. Additionally, proteomic analyses showed that the protein Isoform 2 of Filamin A has higher loading (2.6-fold) in exosomes from African Americans with PCa, but a lesser loading (0.6-fold) was observed in exosomes from Caucasian men with PCa compared to race-matched healthy individuals. Interestingly, TCGA and Taylor's dataset as well as IHC analyses of PCa tissue showed a lower Filamin A expression in tissues of PCa patients compared with normal subjects. Overall, these results support the usefulness of serum exosomes to noninvasively detect inflammatory phenotype and to discover novel biomarkers associated with PCa in African American men.


Subject(s)
Biomarkers, Tumor , Black or African American , Exosomes/metabolism , Phenotype , Prostatic Neoplasms/metabolism , Proteome , Proteomics , Biopsy , Calcium/metabolism , Cell Line, Tumor , Chromatography, Liquid , Exosomes/ultrastructure , Filamins/metabolism , Healthcare Disparities , Humans , Immunohistochemistry , Inflammation Mediators , Macrophages/metabolism , Male , Molecular Imaging , Neurons/metabolism , Prostatic Neoplasms/epidemiology , Proteomics/methods , Tandem Mass Spectrometry , White People
6.
Pflugers Arch ; 469(10): 1313-1323, 2017 10.
Article in English | MEDLINE | ID: mdl-28612138

ABSTRACT

The sensation of itching can be defined as "an unpleasant cutaneous sensation that provokes a desire to scratch." The perception of itching is not critical for the maintenance of life, but persistent itching can be extremely irritating and decreases the quality of life. Crotamiton (N-ethyl-o-crotonotoluidide) has been used as an anti-itch agent for humans for around 70 years. In spite of the long use of crotamiton, its mechanism of action remains unknown. We hypothesized that crotamiton might have effects on transient receptor potential (TRP) channels expressed in the peripheral nervous system and the skin. We first examined the effects of crotamiton on TRP channels by whole-cell patch-clamp recordings. We found that crotamiton strongly inhibited TRPV (vanilloid) 4 channels followed by large currents after crotamiton washout. In mice, crotamiton inhibited itch-related behaviors induced by a TRPV4-selective agonist (GSK1016790A). We biophysically investigated the large TRPV4 currents after crotamiton washout. Comparing single-channel open probabilities and current amplitudes of TRPV4, increases in both parameters were found to contribute to the large washout currents of TRPV4. Because the change in current amplitudes suggested pore dilation of TRPV4, we examined this possibility with cation replacement experiments and by measuring changes in reversal potentials. Greater cation influxes and changes in reversal potentials upon crotamiton washout were observed, suggesting that the TRPV4 pore dilated in its uninhibited state. From these results, we identified the molecular target of crotamiton as TRPV4 and demonstrated pore dilation of TRPV4 upon crotamiton washout.


Subject(s)
TRPV Cation Channels/antagonists & inhibitors , Toluidines/pharmacology , Animals , Cells, Cultured , Humans , Leucine/analogs & derivatives , Leucine/pharmacology , Mice, Inbred C57BL , Sulfonamides/pharmacology , TRPV Cation Channels/drug effects
7.
J Physiol ; 595(8): 2681-2698, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28176353

ABSTRACT

KEY POINTS: Lysophosphatidic acid (LPA) is an itch mediator, but not a pain mediator by a cheek injection model. Dorsal root ganglion neurons directly respond to LPA depending on transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1). LPA-induced itch-related behaviours are decreased in TRPA1-knockout (KO), TRPV1KO or TRPA1TRPV1 double KO mice. TRPA1 and TRPV1 channels are activated by intracellular LPA, but not by extracellular LPA following LPA5 receptor activation with an activity of Ca2+ -independent phospholipase A2 and phospholipase D. Intracellular LPA interaction sites of TRPA1 are KK672-673 and KR977-978 (K: lysine, R: arginine). ABSTRACT: Intractable and continuous itch sensations often accompany diseases such as atopic dermatitis, neurogenic lesions, uremia and cholestasis. Lysophosphatidic acid (LPA) is an itch mediator found in cholestatic itch patients and it induces acute itch and pain in experimental rodent models. However, the molecular mechanism by which LPA activates peripheral sensory neurons remains unknown. In this study, we used a cheek injection method in mice to reveal that LPA induced itch-related behaviours but not pain-related behaviours. The LPA-induced itch behaviour and cellular effects were dependent on transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1), which are important for itch signal transduction. We also found that, among the six LPA receptors, the LPA5 receptor had the greatest involvement in itching. Furthermore, we demonstrated that phospholipase D (PLD) plays a critical role downstream of LPA5 and that LPA directly and intracellularly activates TRPA1 and TRPV1. These results suggest a unique mechanism by which cytoplasmic LPA produced de novo could activate TRPA1 and TRPV1. We conclude that LPA-induced itch is mediated by LPA5 , PLD, TRPA1 and TRPV1 signalling, and thus targeting TRPA1, TRPV1 or PLD could be effective for cholestatic itch interventions.


Subject(s)
Lysophospholipids/toxicity , Phospholipase D/physiology , Pruritus/metabolism , Receptors, Lysophosphatidic Acid/physiology , TRPV Cation Channels/physiology , Transient Receptor Potential Channels/physiology , Animals , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pruritus/chemically induced , Signal Transduction/drug effects , Signal Transduction/physiology , TRPA1 Cation Channel
8.
J Pharm Biomed Anal ; 136: 126-133, 2017 Mar 20.
Article in English | MEDLINE | ID: mdl-28081498

ABSTRACT

The plasma/serum concentration of 25-hydroxyvitamin D3 [25(OH)D3] is a diagnostic index for vitamin D deficiency/insufficiency, which is associated with a wide range of diseases, such as rickets, cancer and diabetes. We have reported that the derivatization with 4-(4-dimethylaminophenyl)-1,2,4-triazoline-3,5-dione (DAPTAD) works well in the liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) assay of the serum/plasma 25(OH)D3 for enhancing the sensitivity and the separation from a potent interfering metabolite, 3-epi-25-hydroxyvitamin D3 [3-epi-25(OH)D3]. However, enhancing the analysis throughput remains an issue in the LC/ESI-MS/MS assay of 25(OH)D3. The most obvious restriction of the LC/MS/MS throughput is the chromatographic run time. In this study, we developed an enhanced throughput method for the determination of the plasma 25(OH)D3 by LC/ESI-MS/MS combined with the derivatization using the triplex (2H0-, 2H3- and 2H6-) DAPTAD isotopologues. After separate derivatization with 1 of 3 different isotopologues, the 3 samples were combined and injected together into LC/ESI-MS/MS. Based on the mass differences between the isotopologues, the derivatized 25(OH)D3 in the 3 different samples were quantified within a single run. The developed method tripled the hourly analysis throughput without sacrificing assay performance, i.e., ease of pretreatment of plasma sample (only deproteinization), limit of quantification (1.0ng/mL when a 5µL-plasma was used), precision (intra-assay RSD≤5.9% and inter-assay RSD≤5.5%), accuracy (98.7-102.2%), matrix effects, and capability of separating from an interfering metabolite, 3-epi-25(OH)D3. The multiplexing of samples by the isotopologue derivatization was applied to the analysis of plasma samples of healthy subjects and the developed method was proven to have a satisfactory applicability.


Subject(s)
Aniline Compounds/chemistry , Calcifediol/blood , Chromatography, Liquid/methods , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Triazoles/chemistry , Adult , Aniline Compounds/chemical synthesis , Humans , In Vitro Techniques , Infant , Limit of Detection , Reproducibility of Results , Sensitivity and Specificity , Triazoles/chemical synthesis
9.
Allergol Int ; 66(1): 22-30, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28012781

ABSTRACT

Itch is an unpleasant cutaneous sensation that can arise following insect bites, exposure to plant ingredients, and some diseases. Itch can also have idiopathic causes. Itch sensations are thought to protect against external insults and toxic substances. Although itch is not directly lethal, chronic and long lasting itch in certain diseases can worsen quality of life. Therefore, the mechanisms responsible for chronic itch require careful investigation. There is a significant amount of basic research concerning itch, and the effect of various itch mediators on primary sensory neurons have been studied. Interestingly, many mediators of itch involve signaling related to transient receptor potential (TRP) channels. TRP channels, especially thermosensitive TRP channels, are expressed by primary sensory neurons and skin keratinocytes, which receive multimodal stimuli, including those that cause itch sensations. Here we review the molecular and cellular mechanisms of itch and the involvement of TRP channels in mediating itch sensations.


Subject(s)
Peripheral Nerves , Pruritus , Sensory Receptor Cells/metabolism , Skin , Transient Receptor Potential Channels/metabolism , Humans , Peripheral Nerves/metabolism , Peripheral Nerves/physiopathology , Pruritus/metabolism , Pruritus/physiopathology , Skin/innervation , Skin/metabolism , Skin/physiopathology
10.
Sci Rep ; 6: 26088, 2016 05 18.
Article in English | MEDLINE | ID: mdl-27188969

ABSTRACT

Transient receptor potential vanilloid receptor 1 (TRPV1) is a non-selective cation channel that is stimulated by heat (>43 °C), mechanical/osmotic stimuli, and low pH. The importance of TRPV1 in inflammatory responses has been demonstrated, whereas its participation in brains remains unclear. In the present study, the intracerebroventricular (icv) administration of the TRPV1 agonist resiniferatoxin (RTX) induced the activation of signal transducer and activator of transcription 3 (STAT3) in circumventricular organs (CVOs) and thermoregulation-associated brain regions with a similar patttern to the peripheral and icv administration of lipopolysaccharide (LPS). With the peripheral and icv LPS stimuli, STAT3 activation was significantly lower in Trpv1(-/-) mice than in Trpv1(+/+) mice. The icv administration of RTX induced transient hypothermia, whereas that of the TRPV1 antagonist capsazepine enhanced the magnitude and period of LPS-induced hyperthermia. These results indicate that TRPV1 is important for activating proinflammatory STAT3 signaling and thermoregulation-associated brain pathways in the brain.


Subject(s)
Body Temperature Regulation , Brain/physiology , STAT3 Transcription Factor/metabolism , Signal Transduction , TRPV Cation Channels/metabolism , Animals , Brain/drug effects , Capsaicin/administration & dosage , Capsaicin/analogs & derivatives , Diterpenes/administration & dosage , Lipopolysaccharides/administration & dosage , Mice , Mice, Knockout , TRPV Cation Channels/deficiency
11.
Biomed Chromatogr ; 30(6): 938-45, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26451531

ABSTRACT

The screening of vitamin D deficiency in neonatal infants, which is based on the blood 25-hydroxyvitamin D3 [25(OH)D3 ] quantification, is important for the early detection, diagnosis and health risk assessment of several diseases. In this study, two new Cookson-type reagents, 4-(4-diethylaminophenyl)-1,2,4-triazoline-3,5-dione (DEAPTAD) and 4-(6-quinolyl)-1,2,4-triazoline-3,5-dione, were designed and synthesized, then compared with the previous reagents, 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) and 4-(4-dimethylaminophenyl)-1,2,4-triazoline-3,5-dione (DAPTAD), in terms of sensitivity and specificity in the assay of 25(OH)D3 in neonatal blood samples by liquid chromatography/electrospray ionization-tandem mass spectrometry. Among the reagents, DEAPTAD was found to be the most promising. The limit of detection (0.38 fmol on the column) of the DEAPTAD-derivatized 25(OH)D3 was 60 and 2 times lower than those of the intact 25(OH)D3 and the PTAD derivative, respectively. 25(OH)D3 was more clearly detected in the plasma sample as the DEAPTAD derivative than the DAPTAD derivative owing to the lower background noise. DEAPTAD derivatization was also useful for the separation of 25(OH)D3 from a potent interfering metabolite, 3-epi-25-hydroxyvitamin D3 . By using DEAPTAD, a trace amount of 25(OH)D3 in dried blood spots was reproducibly determined without interference from coexisting compounds. Thus, DEAPTAD was proved useful in the measurement of 25(OH)D3 in neonatal blood samples. Copyright © 2015 John Wiley & Sons, Ltd.


Subject(s)
Calcifediol/blood , Chromatography, Liquid/methods , Indicators and Reagents/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Humans , Infant, Newborn
SELECTION OF CITATIONS
SEARCH DETAIL
...