Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 92(12): 123908, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34972457

ABSTRACT

High-sensitivity capacitive Faraday magnetometers were developed for static DC magnetization measurements in a sub-Kelvin region that can be used with 3He-4He dilution refrigerators (∼50 mK) and 3He refrigerators (∼0.28 K). For high-resolution magnetization measurements, the background magnetization of the force-sensing capacitor should be as small as possible, compared with the magnetization value of a measured specimen. In this study, we succeeded in reducing the background of the capacitor in both low- and high-field regions by compensating for the diamagnetic response of a thin quartz plate, making use of Pauli-paramagnetic alloys and Van Vleck paramagnets as a counter magnetization for a diamagnetic signal. Having established an ultra-high-sensitivity capacitor, we achieved a resolution of 10-5 (∼10-5-10-6) emu in the low- (high-) field region below (above) 1 T. In particular, the newly developed capacitors with a Van Vleck paramagnet Pr0.1La0.9Be13 and paramagnetic MgAl alloys are demonstrated to be very useful for high-resolution magnetization measurements at milli-Kelvin temperatures in low and high magnetic fields, respectively.

2.
Sci Bull (Beijing) ; 65(16): 1349-1355, 2020 Aug 30.
Article in English | MEDLINE | ID: mdl-36659213

ABSTRACT

Spontaneous symmetry breaking has been a paradigm to describe the phase transitions in condensed matter physics. In addition to the continuous electromagnetic gauge symmetry, an unconventional superconductor can break discrete symmetries simultaneously, such as time reversal and lattice rotational symmetry. In this work we report a characteristic in-plane 2-fold behaviour of the resistive upper critical field and point-contact spectra on the superconducting semimetal PbTaSe2 with topological nodal-rings, despite its hexagonal lattice symmetry (or D3h in bulk while C3v on surface, to be precise). The 2-fold behaviour persists up to its surface upper critical field Hc2R even though bulk superconductivity has been suppressed at its bulk upper critical field Hc2HC≪Hc2R, signaling its probable surface-only electronic nematicity. In addition, we do not observe any lattice rotational symmetry breaking signal from field-angle-dependent specific heat within the resolution. It is worth noting that such surface-only electronic nematicity is in sharp contrast to the observation in the topological superconductor candidate, CuxBi2Se3, where the nematicity occurs in various bulk measurements. In combination with theory, superconducting nematicity is likely to emerge from the topological surface states of PbTaSe2, rather than the proximity effect. The issue of time reversal symmetry breaking is also addressed. Thus, our results on PbTaSe2 shed new light on possible routes to realize nematic superconductivity with nontrivial topology.

3.
Phys Rev Lett ; 123(2): 027002, 2019 Jul 12.
Article in English | MEDLINE | ID: mdl-31386520

ABSTRACT

In the electronic nematic state, an electronic system has a lower symmetry than the crystal structure of the same system. Electronic nematic states have been observed in various unconventional superconductors such as cuprate, iron-based, heavy-fermion, and topological superconductors. The relation between nematicity and superconductivity is a major unsolved problem in condensed matter physics. By angle-resolved specific heat measurements, we report bulk quasiparticle evidence of nematicity in the topological superconductor Sr_{x}Bi_{2}Se_{3}. The specific heat exhibited a clear twofold symmetry despite the threefold symmetric lattice. Most importantly, the twofold symmetry appeared in the normal state above the superconducting transition temperature. This is explained by the angle-dependent Zeeman effect due to the anisotropic density of states in the nematic phase. Such results highlight the interrelation between nematicity and unconventional superconductivity.

4.
Sci Rep ; 7(1): 16144, 2017 11 23.
Article in English | MEDLINE | ID: mdl-29170459

ABSTRACT

Quantum entanglement in magnetic materials is expected to yield a quantum spin liquid (QSL), in which strong quantum fluctuations prevent magnetic ordering even at zero temperature. This topic has been one of the primary focuses of condensed-matter science since Anderson first proposed the resonating valence bond state in a certain spin-1/2 frustrated magnet in 1973. Since then, several candidate materials featuring frustration, such as triangular and kagome lattices, have been reported to exhibit liquid-like behavior. However, the mechanisms that stabilize the liquid-like states have remained elusive. Here, we present a QSL state in a spin-1/2 honeycomb lattice with randomness in the exchange interaction. That is, we successfully introduce randomness into the organic radial-based complex and realize a random-singlet (RS) state (or valence bond glass). All magnetic and thermodynamic experimental results indicate the liquid-like behaviors, which are consistent with those expected in the RS state. Our results suggest that the randomness or inhomogeneity in the actual systems stabilize the RS state and yield liquid-like behavior.

5.
Sci Adv ; 3(6): e1601667, 2017 06.
Article in English | MEDLINE | ID: mdl-28691082

ABSTRACT

In exotic superconductors, including high-Tc copper oxides, the interactions mediating electron Cooper pairing are widely considered to have a magnetic rather than a conventional electron-phonon origin. Interest in this exotic pairing was initiated by the 1979 discovery of heavy-fermion superconductivity in CeCu2Si2, which exhibits strong antiferromagnetic fluctuations. A hallmark of unconventional pairing by anisotropic repulsive interactions is that the superconducting energy gap changes sign as a function of the electron momentum, often leading to nodes where the gap goes to zero. We report low-temperature specific heat, thermal conductivity, and magnetic penetration depth measurements in CeCu2Si2, demonstrating the absence of gap nodes at any point on the Fermi surface. Moreover, electron irradiation experiments reveal that the superconductivity survives even when the electron mean free path becomes substantially shorter than the superconducting coherence length. This indicates that superconductivity is robust against impurities, implying that there is no sign change in the gap function. These results show that, contrary to long-standing belief, heavy electrons with extremely strong Coulomb repulsions can condense into a fully gapped s-wave superconducting state, which has an on-site attractive pairing interaction.

6.
Rep Prog Phys ; 79(9): 094002, 2016 09.
Article in English | MEDLINE | ID: mdl-27482621

ABSTRACT

Owing to a strong Coulomb repulsion, heavy electron superconductors mostly have anisotropic gap functions which have nodes for certain directions in the momentum space. Since the nodal structure is closely related to the pairing mechanism, its experimental determination is of primary importance. This article discusses the experimental methods of the gap determination by bulk heat capacity measurements in a rotating magnetic field. The basic idea is based on the fact that the quasiparticle density of states in the vortex state of nodal superconductors is field and direction dependent. We present our recent experimental results of the field-orientation dependence of the heat capacity in heavy fermion superconductors CeTIn5 (T = Co, Ir), UPt3, CeCu2Si2, and UBe13 and discuss their gap structures.

7.
Phys Rev Lett ; 117(3): 037001, 2016 Jul 15.
Article in English | MEDLINE | ID: mdl-27472129

ABSTRACT

Quasiparticle excitations in UPd_{2}Al_{3} were studied by means of heat-capacity (C) measurements under rotating magnetic fields using a high-quality single crystal. The field dependence shows C(H)∝H^{1/2}-like behavior at low temperatures for both two hexagonal crystal axes, i.e., H∥[0001] (c axis) and H∥[112[over ¯]0] (a axis), suggesting the presence of nodal quasiparticle excitations from heavy bands. At low temperatures, the polar-angle (θ) dependence of C exhibits a maximum along H∥[0001] with a twofold symmetric oscillation below 0.5 T, and an unusual shoulder or hump anomaly has been found around 30°-60° from the c axis in C(θ) at intermediate fields (1≲µ_{0}H≲2 T). These behaviors in UPd_{2}Al_{3} purely come from the superconducting nodal quasiparticle excitations, and can be successfully reproduced by theoretical calculations assuming the gap symmetry with a horizontal linear line node. We demonstrate the whole angle-resolved heat-capacity measurements done here as a novel spectroscopic method for nodal gap determination, which can be applied to other exotic superconductors.

8.
Sci Rep ; 5: 15327, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26468930

ABSTRACT

Geometric frustration, in which competing interactions give rise to degenerate ground states, potentially induces various exotic quantum phenomena in magnetic materials. Minimal models comprising triangular units, such as triangular and Kagome lattices, have been investigated for decades to realize novel quantum phases, such as quantum spin liquid. A pentagon is the second-minimal elementary unit for geometric frustration. The realization of such systems is expected to provide a distinct platform for studying frustrated magnetism. Here, we present a spin-1/2 quantum pentagonal lattice in the new organic radical crystal α-2,6-Cl2-V [=α-3-(2,6-dichlorophenyl)-1,5-diphenylverdazyl]. Its unique molecular arrangement allows the formation of a partially corner-shared pentagonal lattice (PCPL). We find a clear 1/3 magnetization plateau and an anomalous change in magnetization in the vicinity of the saturation field, which originate from frustrated interactions in the PCPL.

9.
Phys Rev Lett ; 114(14): 147002, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-25910153

ABSTRACT

Low-energy quasiparticle excitations in the superconducting (SC) state of UBe_{13} were studied by means of specific-heat (C) measurements in a rotating field. Quite unexpectedly, the magnetic-field dependence of C(H) is linear in H with no angular dependence at low fields in the SC state, implying that the gap is fully open over the Fermi surfaces, in stark contrast to previous expectations. In addition, a characteristic cubic anisotropy of C(H) was observed above 2 T with a maximum (minimum) for H∥[001] ([111]) within the (11[over ¯]0) plane, in the normal as well as in the SC states. This oscillation possibly originates from the anisotropic response of the heavy quasiparticle bands, and might be a key to understand the unusual properties of UBe_{13}.

10.
Phys Rev Lett ; 112(6): 067002, 2014 Feb 14.
Article in English | MEDLINE | ID: mdl-24580704

ABSTRACT

Superconductivity in the heavy-fermion compound CeCu2Si2 is a prototypical example of Cooper pairs formed by strongly correlated electrons. For more than 30 years, it has been believed to arise from nodal d-wave pairing mediated by a magnetic glue. Here, we report a detailed study of the specific heat and magnetization at low temperatures for a high-quality single crystal. Unexpectedly, the specific-heat measurements exhibit exponential decay with a two-gap feature in its temperature dependence, along with a linear dependence as a function of magnetic field and the absence of oscillations in the field angle, reminiscent of multiband full-gap superconductivity. In addition, we find anomalous behavior at high fields, attributed to a strong Pauli paramagnetic effect. A low quasiparticle density of states at low energies with a multiband Fermi-surface topology would open a new door into electron pairing in CeCu2Si2.

SELECTION OF CITATIONS
SEARCH DETAIL
...