Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Article in English | WPRIM (Western Pacific) | ID: wpr-180610

ABSTRACT

A field survey studying intestinal parasites in humans and microbial pathogen contamination at environment was performed in a Laotian rural village to identify potential risks for disease outbreaks. A parasitological investigation was conducted in Ban Lak Sip village, Luang Prabang, Lao PDR involving fecal samples from 305 inhabitants as well as water samples taken from 3 sites of the local stream. Water analysis indicated the presence of several enteric pathogens, i.e., Aeromonas spp., Vibrio spp., E. coli H7, E. coli O157: H7, verocytotoxin-producing E. coli (VTEC), Shigella spp., and enteric adenovirus. The level of microbial pathogens contamination was associated with human activity, with greater levels of contamination found at the downstream site compared to the site at the village and upstream, respectively. Regarding intestinal parasites, the prevalence of helminth and protozoan infections were 68.9% and 27.2%, respectively. Eight helminth taxa were identified in fecal samples, i.e., 2 tapeworm species (Taenia sp. and Hymenolepis diminuta), 1 trematode (Opisthorchis sp.), and 5 nematodes (Ascaris lumbricoides, Trichuris trichiura, Strongyloides stercoralis, trichostrongylids, and hookworms). Six species of intestinal protists were identified, i.e., Blastocystis hominis, Cyclospora spp., Endolimax nana, Entamoeba histolytica/E. dispar, Entamoeba coli, and Giardia lamblia. Questionnaires and interviews were also conducted to determine risk factors of infection. These analyses together with a prevailing infection level suggested that most of villagers were exposed to parasites in a similar degree due to limited socio-economic differences and sharing of similar practices. Limited access to effective public health facilities is also a significant contributing factor.


Subject(s)
Humans , Adenoviridae , Aeromonas , Ancylostomatoidea , Ascaris lumbricoides , Blastocystis hominis , Cestoda , Cyclospora , Disease Outbreaks , Endolimax , Entamoeba , Entamoeba histolytica , Giardia lamblia , Helminths , Human Activities , Hymenolepis , Parasites , Prevalence , Protozoan Infections , Public Health , Risk Factors , Rivers , Shigella , Strongyloides stercoralis , Trichuris , Vibrio , Water
2.
Nat Commun ; 5: 5172, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25312328

ABSTRACT

Genes of the major histocompatibility complex (MHC) encode proteins that recognize foreign antigens and are thus crucial for immune response. In a population of a single host species, parasite-mediated selection drives MHC allelic diversity. However, in a community-wide context, species interactions may modulate selection regimes because the prevalence of a given parasite in a given host may depend on its prevalence in other hosts. By combining network analysis with immunogenetics, we show that host species infected by similar parasites harbour similar alleles with similar frequencies. We further show, using a Bayesian approach, that the probability of mutual occurrence of a functional allele and a parasite in a given host individual is nonrandom and depends on other host-parasite interactions, driving co-evolution within subgroups of parasite species and functional alleles. Therefore, indirect effects among hosts and parasites can shape host MHC diversity, scaling it from the population to the community level.


Subject(s)
Helminthiasis/genetics , Helminthiasis/immunology , Helminths/physiology , Host-Parasite Interactions , Major Histocompatibility Complex , Alleles , Animals , Biological Evolution , Helminthiasis/parasitology , Humans , Immunogenetics , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...