Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 4545, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38402274

ABSTRACT

High-quality VO[Formula: see text] films were fabricated on top of c-Al[Formula: see text]O[Formula: see text] substrates using Reactive Bias Target Ion Beam Deposition (RBTIBD) and the studies of graphene/VO[Formula: see text] heterostructure were conducted. Graphene layers were placed on top of [Formula: see text] 50 and [Formula: see text] 100 nm VO[Formula: see text]. The graphene layers were introduced using mechanical exfoliate and CVD graphene wet-transfer method to prevent the worsening crystallinity of VO[Formula: see text], to avoid the strain effect from lattice mismatch and to study how VO[Formula: see text] can affect the graphene layer. Slight increases in graphene/VO[Formula: see text] T[Formula: see text] compared to pure VO[Formula: see text] by [Formula: see text] 1.9 [Formula: see text]C and [Formula: see text] 3.8 [Formula: see text]C for CVD graphene on 100 and 50 nm VO[Formula: see text], respectively, were observed in temperature-dependent resistivity measurements. As the strain effect from lattice mismatch was minimized in our samples, the increase in T[Formula: see text] may originate from a large difference in the thermal conductivity between graphene and VO[Formula: see text]. Temperature-dependent Raman spectroscopy measurements were also performed on all samples, and the G-peak splitting into two peaks, G[Formula: see text] and G[Formula: see text], were observed on graphene/VO[Formula: see text] (100 nm) samples. The G-peak splitting is a reversible process and may originates from in-plane asymmetric tensile strain applied under the graphene layer due to the VO[Formula: see text] phase transition mechanism. The 2D-peak measurements also show large blue-shifts around 13 cm[Formula: see text] at room temperature and slightly red-shifts trend as temperature increases for 100 nm VO[Formula: see text] samples. Other electronic interactions between graphene and VO[Formula: see text] are expected as evidenced by 2D-peak characteristic observed in Raman measurements. These findings may provide a better understanding of graphene/VO[Formula: see text] and introduce some new applications that utilize the controllable structural properties of graphene via the VO[Formula: see text] phase transition.

2.
Nanomaterials (Basel) ; 13(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37947693

ABSTRACT

The ability to manipulate spins in magnetic materials is essential in designing spintronics devices. One method for magnetic switching is through strain. In VO2 on TiO2 thin films, while VO2 remains rutile across the metal-insulator transition, the in-plane lattice area expands going from a low-temperature insulating phase to a high-temperature conducting phase. In a VO2/TbFeCo bilayer, the expansion of the VO2 lattice area exerts tension on the amorphous TbFeCo layer. Through the strain effect, magnetic properties, including the magnetic anisotropy and magnetization, of TbFeCo can be changed. In this work, the changes in magnetic properties of TbFeCo on VO2/TiO2(011) are demonstrated using anomalous Hall effect measurements. Across the metal-insulator transition, TbFeCo loses perpendicular magnetic anisotropy, and the magnetization in TbFeCo turns from out-of-plane to in-plane. Using atomistic simulations, we confirm these tunable magnetic properties originating from the metal-insulator transition of VO2. This study provides the groundwork for controlling magnetic properties through a phase transition.

3.
J Chem Phys ; 152(4): 044715, 2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32007066

ABSTRACT

In this work, ambient pressure x-ray photoelectron spectroscopy (APXPS) is used to study the initial stages of water adsorption on vanadium oxide surfaces. V 2p, O 1s, C 1s, and valence band XPS spectra were collected as a function of relative humidity in a series of isotherm and isobar experiments. Experiments were carried out on two VO2 thin films on TiO2 (100) substrates, prepared with different surface cleaning procedures. Hydroxyl and molecular water surface species were identified, with up to 0.5 ML hydroxide present at the minimum relative humidity, and a consistent molecular water adsorption onset occurring around 0.01% relative humidity. The work function was found to increase with increasing relative humidity, suggesting that surface water and hydroxyl species are oriented with the hydrogen atoms directed away from the surface. Changes in the valence band were also observed as a function of relative humidity. The results were similar to those observed in APXPS experiments on other transition metal oxide surfaces, suggesting that H2O-OH and H2O-H2O surface complex formation plays an important role in the oxide wetting process and water dissociation. Compared to polycrystalline vanadium metal, these vanadium oxide films generate less hydroxide and appear to be more favorable for molecular water adsorption.

4.
Adv Mater ; 31(18): e1900251, 2019 May.
Article in English | MEDLINE | ID: mdl-30907483

ABSTRACT

Unlike conventional plasmonic media, polaritonic van der Waals (vdW) materials hold promise for active control of light-matter interactions. The dispersion relations of elementary excitations such as phonons and plasmons can be tuned in layered vdW systems via stacking using functional substrates. In this work, infrared nanoimaging and nanospectroscopy of hyperbolic phonon polaritons are demonstrated in a novel vdW heterostructure combining hexagonal boron nitride (hBN) and vanadium dioxide (VO2 ). It is observed that the insulator-to-metal transition in VO2 has a profound impact on the polaritons in the proximal hBN layer. In effect, the real-space propagation of hyperbolic polaritons and their spectroscopic resonances can be actively controlled by temperature. This tunability originates from the effective change in local dielectric properties of the VO2 sublayer in the course of the temperature-tuned insulator-to-metal phase transition. The high susceptibility of polaritons to electronic phase transitions opens new possibilities for applications of vdW materials in combination with strongly correlated quantum materials.

5.
Nature ; 487(7407): 345-8, 2012 Jul 19.
Article in English | MEDLINE | ID: mdl-22801506

ABSTRACT

Electron-electron interactions can render an otherwise conducting material insulating, with the insulator-metal phase transition in correlated-electron materials being the canonical macroscopic manifestation of the competition between charge-carrier itinerancy and localization. The transition can arise from underlying microscopic interactions among the charge, lattice, orbital and spin degrees of freedom, the complexity of which leads to multiple phase-transition pathways. For example, in many transition metal oxides, the insulator-metal transition has been achieved with external stimuli, including temperature, light, electric field, mechanical strain or magnetic field. Vanadium dioxide is particularly intriguing because both the lattice and on-site Coulomb repulsion contribute to the insulator-to-metal transition at 340 K (ref. 8). Thus, although the precise microscopic origin of the phase transition remains elusive, vanadium dioxide serves as a testbed for correlated-electron phase-transition dynamics. Here we report the observation of an insulator-metal transition in vanadium dioxide induced by a terahertz electric field. This is achieved using metamaterial-enhanced picosecond, high-field terahertz pulses to reduce the Coulomb-induced potential barrier for carrier transport. A nonlinear metamaterial response is observed through the phase transition, demonstrating that high-field terahertz pulses provide alternative pathways to induce collective electronic and structural rearrangements. The metamaterial resonators play a dual role, providing sub-wavelength field enhancement that locally drives the nonlinear response, and global sensitivity to the local changes, thereby enabling macroscopic observation of the dynamics. This methodology provides a powerful platform to investigate low-energy dynamics in condensed matter and, further, demonstrates that integration of metamaterials with complex matter is a viable pathway to realize functional nonlinear electromagnetic composites.

SELECTION OF CITATIONS
SEARCH DETAIL
...