Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Invest Dermatol ; 142(1): 114-123.e8, 2022 01.
Article in English | MEDLINE | ID: mdl-34274346

ABSTRACT

Dupuytren's disease (DD) is a common, progressive fibroproliferative disease affecting the palmar fascia of the hands, causing fingers to irreversibly flex toward the palm with significant loss of function. Surgical treatments are limited; therefore, effective new therapies for DD are urgently required. To identify the key cellular and molecular pathways driving DD, we employed single-cell RNA sequencing, profiling the transcriptomes of 35,250 human single cells from DD, nonpathogenic fascia, and healthy dermis. We identify a DD-specific population of pathogenic PDPN+/FAP+ mesenchymal cells displaying an elevated expression of fibrillar collagens and profibrogenic genes. In silico trajectory analysis reveals resident fibroblasts to be the source of this pathogenic population. To resolve the processes governing DD progression, genes differentially expressed during fibroblast differentiation were identified, including upregulated TNFRSF12A and transcription factor SCX. Knockdown of SCX and blockade of TNFRSF12A inhibited the proliferation and altered the profibrotic gene expression of cultured human FAP+ mesenchymal cells, demonstrating a functional role for these genes in DD. The power of single-cell RNA sequencing is utilized to identify the major pathogenic mesenchymal subpopulations driving DD and the key molecular pathways regulating the DD-specific myofibroblast phenotype. Using this precision medicine approach, inhibition of TNFRSF12A has shown potential clinical utility in the treatment of DD.


Subject(s)
Dermis/physiology , Dupuytren Contracture/genetics , Fibroblasts/physiology , Mesenchymal Stem Cells/physiology , Myofibrils/pathology , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation , Cell Proliferation , Cells, Cultured , Endopeptidases/metabolism , Fibrosis/genetics , Gene Expression Profiling , Gene Knockdown Techniques , Humans , Membrane Glycoproteins/metabolism , Membrane Proteins/metabolism , Sequence Analysis, RNA , Single-Cell Analysis , TWEAK Receptor/genetics , TWEAK Receptor/metabolism
2.
Hepatol Commun ; 5(3): 358-370, 2021 03.
Article in English | MEDLINE | ID: mdl-33681672

ABSTRACT

The hepatic mesenchyme has been studied extensively in the context of liver fibrosis; however, much less is known regarding the role of mesenchymal cells during liver regeneration. As our knowledge of the cellular and molecular mechanisms driving hepatic regeneration deepens, the key role of the mesenchymal compartment during the regenerative response has been increasingly appreciated. Single-cell genomics approaches have recently uncovered both spatial and functional zonation of the hepatic mesenchyme in homeostasis and following liver injury. Here we discuss how the use of preclinical models, from in vivo mouse models to organoid-based systems, are helping to shape our understanding of the role of the mesenchyme during liver regeneration, and how these approaches should facilitate the precise identification of highly targeted, pro-regenerative therapies for patients with liver disease.


Subject(s)
Hepatic Stellate Cells/physiology , Liver Diseases/physiopathology , Liver Regeneration/physiology , Liver/cytology , Mesoderm/cytology , Animals , Cells, Cultured , Humans , Liver/physiopathology , Mesoderm/physiopathology , Mice
3.
Cell Tissue Res ; 365(3): 511-9, 2016 09.
Article in English | MEDLINE | ID: mdl-27139180

ABSTRACT

Chronic tissue injury with fibrosis results in the disruption of tissue architecture, organ dysfunction and eventual organ failure. Therefore, the development of effective anti-fibrotic therapies is urgently required. During fibrogenesis, complex interplay occurs between cellular and extracellular matrix components of the wound healing response. Integrins, a family of transmembrane cell adhesion molecules, play a key role in mediating intercellular and cell-matrix interactions. Thus, integrins provide a major node of communication between the extracellular matrix, inflammatory cells, fibroblasts and parenchymal cells and, as such, are intimately involved in the initiation, maintenance and resolution of tissue fibrosis. Modulation of members of the αv integrin family has exhibited profound effects on fibrosis in multiple organs and disease states. In this review, we discuss the current knowledge of the mechanisms of αv-integrin-mediated regulation of fibrogenesis and show that the therapeutic targeting of specific αv integrins represents a promising avenue to treat patients with a broad range of fibrotic diseases.


Subject(s)
Integrin alphaV/metabolism , Animals , Fibrosis , Humans , Models, Biological , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...