Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Contemp Clin Trials Commun ; 17: 100549, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32154432

ABSTRACT

Previous observational studies have shown that the endocrine disrupting chemical bisphenol A (BPA) is associated with type 2 diabetes, but few studies have examined direct effects of BPA on human health. The purpose of this study is to determine whether orally administered BPA at the US Environmental Protection Agency (EPA) safe dose of 50 µg/kg body weight has an adverse effect on hepatic glucose production and skeletal muscle insulin sensitivity. Forty, non-habitually active, healthy adults of normal weight will be enrolled. Participants will begin with a 2-day baseline energy balance diet low in bisphenols in which urine and blood will be collected, and standard tests performed to assess the primary outcome measures of hepatic glucose production (via [6,6-2H] glucose infusion) and skeletal muscle insulin sensitivity (via euglycemic hyperinsulinemic clamp technique). Secondary outcome measures are fasting hormones/endocrine factors (insulin, glucose, C-peptide, Pro-insulin, adiponectin, 17-beta-estradiol, free fatty acids) related to the pathogenesis of type 2 diabetes. Participants will then be randomly assigned to a 4-day energy balance diet plus oral administration of BPA at 50 µg/kg body weight (Diet + BPA) or 4-day energy balance diet plus oral administration of placebo (Diet + No BPA); all outcome measures will be reassessed after 4 days. Findings from this study will provide a framework for other studies in this area, and provide much needed experimental evidence using gold standard measures as to whether oral BPA administration over several days poses any risk of type 2 diabetes.

2.
Astrobiology ; 12(9): 841-53, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22984872

ABSTRACT

We report the first science results from the Space Environment Viability of Organics (SEVO) payload aboard the Organism/Organic Exposure to Orbital Stresses (O/OREOS) free-flying nanosatellite, which completed its nominal spaceflight mission in May 2011 but continues to acquire data biweekly. The SEVO payload integrates a compact UV-visible-NIR spectrometer, utilizing the Sun as its light source, with a 24-cell sample carousel that houses four classes of vacuum-deposited organic thin films: polycyclic aromatic hydrocarbon (PAH), amino acid, metalloporphyrin, and quinone. The organic films are enclosed in hermetically sealed sample cells that contain one of four astrobiologically relevant microenvironments. Results are reported in this paper for the first 309 days of the mission, during which the samples were exposed for ∼2210 h to direct solar illumination (∼1080 kJ/cm(2) of solar energy over the 124-2600 nm range). Transmission spectra (200-1000 nm) were recorded for each film, at first daily and subsequently every 15 days, along with a solar spectrum and the dark response of the detector array. Results presented here include eight preflight and 16 in-flight spectra of eight SEVO sample cells. Spectra from the PAH thin film in a water-vapor-containing microenvironment indicate measurable change due to solar irradiation in orbit, while three other nominally water-free microenvironments show no appreciable change. The quinone anthrarufin showed high photostability and no significant spectroscopically measurable change in any of the four microenvironments during the same period. The SEVO experiment provides the first in situ real-time analysis of the photostability of organic compounds and biomarkers in orbit.


Subject(s)
Space Flight , Amino Acids/chemistry , Benzoquinones/chemistry , Extraterrestrial Environment , Metalloporphyrins/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Spectrum Analysis , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...