Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Parasitol Res ; 123(5): 221, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787430

ABSTRACT

Ivermectin mass drug administration has been used for decades to target human and veterinary ectoparasites, and is currently being considered for use against malaria vectors. Although there have been few reports of resistance to date in human ectoparasites, we must anticipate the development of resistance in mosquitoes in the future. Hence, through this review, we mapped the existing evidence on ivermectin resistance mechanisms in human ectoparasites. A search was conducted on the 8th November 2023 through databases, PubMed, Web of Science, and Google Scholar, using terms related to ivermectin, human and veterinary ectoparasites, and resistance. Abstracts (5893) were screened by JFA and CK. Data on the study organism, the type of resistance, the analysis methods, and, where applicable, the gene loci of interest were extracted from the studies. Details of the methodology and results of each study were summarised narratively and in a table. Eighteen studies were identified describing ivermectin resistance in ectoparasites. Two studies described target site resistance; and 16 studies reported metabolic resistance and/or changes in efflux pump expression. The studies investigated genetic mutations in resistant organisms, detoxification, and efflux pump expression in resistant versus susceptible organisms, and the effect of synergists on mortality or detoxification enzyme/efflux pump transcription. To date, very few studies have been conducted examining the mechanisms of ivermectin resistance in ectoparasites, with only two on Anopheles spp. Of the existing studies, most examined detoxification and efflux pump gene expression, and only two studies in lice investigated target-site resistance. Further research in this field should be encouraged, to allow for close monitoring in ivermectin MDA programmes, and the development of resistance mitigation strategies.


Subject(s)
Ivermectin , Ivermectin/pharmacology , Animals , Humans , Drug Resistance/genetics , Insecticides/pharmacology , Ectoparasitic Infestations/parasitology , Ectoparasitic Infestations/veterinary , Ectoparasitic Infestations/drug therapy , Insecticide Resistance/genetics
2.
Malar J ; 22(1): 291, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37777725

ABSTRACT

BACKGROUND: Ivermectin (IVM) mass drug administration is a candidate complementary malaria vector control tool. Ingestion of blood from IVM treated hosts results in reduced survival in mosquitoes. Estimating bio-efficacy of IVM on wild-caught mosquitoes requires they ingest the drug in a blood meal either through a membrane or direct feeding on a treated host. The latter, has ethical implications, and the former results in low feeding rates. Therefore, there is a need to develop a safe and effective method for IVM bio-efficacy monitoring in wild mosquitoes. METHODS: Insectary-reared Anopheles gambiae s.s. were exposed to four IVM doses: 85, 64, 43, 21 ng/ml, and control group (0 ng/ml) in three different solutions: (i) blood, (ii) 10% glucose, (iii) four ratios (1:1, 1:2, 1:4, 1:8) of blood in 10% glucose, and fed through filter paper. Wild-caught An. gambiae s.l. were exposed to 85, 43 and 21 ng/ml IVM in blood and 1:4 ratio of blood-10% glucose mixture. Survival was monitored for 28 days and a pool of mosquitoes from each cohort sacrificed immediately after feeding and weighed to determine mean weight of each meal type. RESULTS: When administered in glucose solution, mosquitocidal effect of IVM was not comparable to the observed effects when similar concentrations were administered in blood. Equal concentrations of IVM administered in blood resulted in pronounced reductions in mosquito survival compared to glucose solution only. However, by adding small amounts of blood to glucose solution, mosquito mortality rates increased resulting in similar effects to what was observed during blood feeding. CONCLUSION: Bio-efficacy of ivermectin is strongly dependent on mode of drug delivery to the mosquito and likely influenced by digestive processes. The assay developed in this study is a good candidate for field-based bio-efficacy monitoring: wild mosquitoes readily feed on the solution, the assay can be standardized using pre-selected concentrations and by not involving treated blood hosts (human or animal) variation in individual pharmacokinetic profiles as well as ethical issues are bypassed. Meal volumes did not explain the difference in the lethality of IVM across the different meal types necessitating further research on the underlying mechanisms.


Subject(s)
Anopheles , Insecticides , Malaria , Animals , Humans , Ivermectin/pharmacology , Insecticides/pharmacology , Mosquito Vectors , Glucose/pharmacology , Mosquito Control
3.
Parasit Vectors ; 16(1): 293, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37605264

ABSTRACT

BACKGROUND: The effects of ivermectin (endectocide) on mosquito survival make it a potential new malaria vector control tool. The drug can be administered to mosquito disease vectors through blood hosts that include humans and livestock. Its increased use may cause contamination of larval habitats, either directly through livestock excreta or indirectly through leaching or run-off from contaminated soil, albeit in sublethal doses. However, the effects of such exposure on immature stages and the subsequent adults that emerge are poorly understood. This study was undertaken to evaluate the impact of ivermectin exposure on Anopheles gambiae s.s. larvae and its effects on fitness and susceptibility to ivermectin in the emerging adults. METHODS: Laboratory-reared An. gambiae s.s. (Kilifi strain) larvae were exposed to five different ivermectin concentrations; 0, 0.00001, 0.0001, 0.001, and 0.01 ppm, and larval survival was monitored to determine the appropriate sub-lethal dose. Concentrations with survival > 50% (0.00001 and 0.0001 ppm) were selected and used as the sub-lethal doses. The fecundity, fertility, and susceptibility to ivermectin of adults emerging after larval exposure to the sub-lethal doses were examined. RESULTS: Overall, exposure of An. gambiae s.s. aquatic stages to ivermectin caused a dose-dependent reduction in larval survival irrespective of the stage at which the larvae were exposed. Exposure to ivermectin in the larval stage did not have an effect on either the number of eggs laid or the hatch rate. However, exposure of first/second-instar larvae to 0.0001 ppm and third/fourth-instar larvae to 0.001 ppm of ivermectin reduced the time taken to oviposition. Additionally, exposure to ivermectin in the larval stage did not affect susceptibility of the emerging adults to the drug. CONCLUSIONS: This study shows that contamination of larval habitats with ivermectin affects An. gambiae s.s. larval survival and could potentially have an impact on public health. However, there are no carry-over effects on the fecundity, fertility, and susceptibility of the emerging adults to ivermectin. In addition, this study shows that environmental exposure to ivermectin in the larval habitats is unlikely to compromise the efficacy of ivermectin in the emerging adults.


Subject(s)
Anopheles , Malaria , Adult , Humans , Animals , Female , Ivermectin/pharmacology , Mosquito Vectors , Larva , Livestock
4.
Parasit Vectors ; 14(1): 172, 2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33743783

ABSTRACT

BACKGROUND: Despite remarkable success obtained with current malaria vector control strategies in the last 15 years, additional innovative measures will be needed to achieve the ambitious goals for malaria control set for 2030 by the World Health Organization (WHO). New tools will need to address insecticide resistance and residual transmission as key challenges. Endectocides such as ivermectin are drugs that kill mosquitoes which feed on treated subjects. Mass administration of ivermectin can effectively target outdoor and early biting vectors, complementing the still effective conventional tools. Although this approach has garnered attention, development of ivermectin resistance is a potential pitfall. Herein, we evaluate the potential role of xenobiotic pumps and cytochrome P450 enzymes in protecting mosquitoes against ivermectin by active efflux and metabolic detoxification, respectively. METHODS: We determined the lethal concentration 50 for ivermectin in colonized Anopheles gambiae; then we used chemical inhibitors and inducers of xenobiotic pumps and cytochrome P450 enzymes in combination with ivermectin to probe the mechanism of ivermectin detoxification. RESULTS: Dual inhibition of xenobiotic pumps and cytochromes was found to have a synergistic effect with ivermectin, greatly increasing mosquito mortality. Inhibition of xenobiotic pumps alone had no effect on ivermectin-induced mortality. Induction of xenobiotic pumps and cytochromes may confer partial protection from ivermectin. CONCLUSION: There is a clear pathway for development of ivermectin resistance in malaria vectors. Detoxification mechanisms mediated by cytochrome P450 enzymes are more important than xenobiotic pumps in protecting mosquitoes against ivermectin.


Subject(s)
Anopheles/drug effects , Anopheles/metabolism , Biological Assay/methods , Insecticide Resistance , Insecticides/pharmacology , Ivermectin/pharmacology , Mosquito Vectors/drug effects , Mosquito Vectors/metabolism , Animals , Cytochrome P-450 Enzyme System/metabolism , Female , Lethal Dose 50 , Malaria/prevention & control , Malaria/transmission , Mosquito Control , Xenobiotics
5.
Malar J ; 17(1): 3, 2018 01 05.
Article in English | MEDLINE | ID: mdl-29304805

ABSTRACT

BACKGROUND: The strategy for malaria vector control in the context of reducing malaria morbidity and mortality has been the scale-up of long-lasting insecticidal nets to universal coverage and indoor residual spraying. This has led to significant decline in malaria transmission. However, these vector control strategies rely on insecticides which are threatened by insecticide resistance. In this study the status of pyrethroid resistance in malaria vectors and it's implication in malaria transmission at the Kenyan Coast was investigated. RESULTS: Using World Health Organization diagnostic bioassay, levels of phenotypic resistance to permethrin and deltamethrin was determined. Anopheles arabiensis showed high resistance to pyrethroids while Anopheles gambiae sensu stricto (s.s.) and Anopheles funestus showed low resistance and susceptibility, respectively. Anopheles gambiae sensu lato (s.l.) mosquitoes were further genotyped for L1014S and L1014F kdr mutation by real time PCR. An allele frequency of 1.33% for L1014S with no L1014F was detected. To evaluate the implication of pyrethroid resistance on malaria transmission, Plasmodium falciparum infection rates in field collected adult mosquitoes was determined using enzyme linked immunosorbent assay and further, the behaviour of the vectors was assessed by comparing indoor and outdoor proportions of mosquitoes collected. Sporozoite infection rate was observed at 4.94 and 2.60% in An. funestus s.l. and An. gambiae s.l., respectively. A higher density of malaria vectors was collected outdoor and this also corresponded with high Plasmodium infection rates outdoor. CONCLUSIONS: This study showed phenotypic resistance to pyrethroids and low frequency of L1014S kdr mutation in An. gambiae s.l. The occurrence of phenotypic resistance with low levels of kdr frequencies highlights the need to investigate other mechanisms of resistance. Despite being susceptible to pyrethroids An. funestus s.l. could be driving malaria infections in the area.


Subject(s)
Anopheles/drug effects , Insecticide Resistance , Insecticides/pharmacology , Mosquito Vectors/drug effects , Nitriles/pharmacology , Permethrin/pharmacology , Pyrethrins/pharmacology , Animals , Anopheles/genetics , Anopheles/parasitology , Biological Assay , Enzyme-Linked Immunosorbent Assay , Female , Gene Frequency , Genotype , Genotyping Techniques , Kenya , Plasmodium falciparum/isolation & purification , Polymerase Chain Reaction , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL
...